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We mapped the phase spaces to complex networks in four models: antiferromagnets on triangular lattices at ground 
states and above ground states, six-vertex (spin ice) models, 1D and 2D lattice gases. Their phase-space networks share 
some common features including the Gaussian degree distribution, the Gaussian spectral density, and the small-world 
properties. The phase spaces exhibit unique self-similar properties. Models with long-range correlations in real space 
exhibit fractal phase spaces, while models with short-range correlations in real space exhibit nonfractal phase spaces. 
This behavior agrees with one of the untested assumptions in Tsallis nonextensive statistics even though Tsallis entropy 
does not apply to these systems. The network community analysis can be used to quantify the weak ergodicity. 

Models:

1. Antiferromagnet on triangular 
lattice (above the ground state)
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Common features:
Gaussian spectral density

for all phase-space networks

The normalized spectral densities, (’), of phase-space 
networks of antiferromagets above ground state and 2D 
lattice gases. The Gaussian (’) reflects the unique 
topology of phase-space networks.
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Small-world property
mean distance between nodes < log (network size Nnode)

small world
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largest distance = number of cubes ~ L3

s0: zero point entropy
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2D sphere stacks = 2D square stacks 
= 1D lattice gas = integer partition

2D lattice gas: 
 no interaction
 periodic boundary    

condition 

The phase-space network of 
3 particles in a 3  2 lattice

Phase-space network of m = n = 3 stacks

square stacking in an m  n box 
=  m particles diffuse in m + n sites

Gaussian degree distribution

The degree, or connectivity, distribution of phase-space networks. (A) 
cube stacks in boxes with side lengths L = 3, 4. (B) sphere stacks in 
tetrahedron (L = 5, 6). (C) 4  3, 4  4, and 4  5 spin ices with free 
boundary conditions. (D) antiferromagnets above ground state in 3  3 
3 and 4  3  2 lattices. (E) 1D lattice gases (m = n = 8, 9, 10, 11). (F) 2D 
lattice gases: 8, 10 and 12 particles in 5  5 lattices. The Gaussian 
behavior has been proved in the 1D lattice gas case.

Fractal Property

Community structure
to detect and quantify the weak ergodicity
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System trapped in one community for a 
long time  weak ergodic

Power-law

Fractal analysis algorithm:
1. Generate boxes where all nodes are within a distance lB
2. Calculate the number of boxes, NB, needed to cover the network
3. Fractal , dB: fractal dimension( ) ~ d
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nono(D) 2D lattice gas 
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in real space 
(Fig. 2)
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phase 
space 

(Fig. 1)Fig. 2 autocorrelations in real spaceFig. 1 Fractal analysis of phase spaces

A basic conjecture in Tsallis statistics:
long-range interacting or correlated systems have fractal phase spaces
Any system with fractal phase space? Here we provide the first examples.


