

3rd Workshop on Quantum Condensation HKUST, July 4, 2011

Effects of particle-hole channel on the behavior of BCS-BEC crossover

Qijin Chen (陈启谨)

Department of Physics, Zhejiang University

\$\$\$ Supported by NSF, MOST, MOE of China

Outline

- Motivation
- Pairing fluctuation theory with the particle-hole channel included.
- Calculations and Discussions
- Summary

QC, Kosztin, Janko, and Levin, <u>*Phys. Rev. Lett.* 81, 4708 (1998).</u> QC, Stajic, Tan, and Levin, *Physics Reports* 412, 1 (2005).

Motivations

- Fermionic superfluidity concerns pairing --- particle-particle channel.
- Particle-hole channel causes chemical potential shift, often neglected.
- Gorkov -- Melik-Barkhudarov (GMB) [Sov. Phys. JETP 13, 1018 (1961)] showed a big effect: Suppression of both Tc and ∆(0) by a factor of (4e)^{1/3} ≈ 2.22. -- lowest order effect.
- Berk and Schrieffer studied the "effects of ferromagnetic spin correlations on superconductivity" [PRL 17, 433 (1966)].
- GMB effect neglected until atomic Fermi gases [Heiselberg et al., PRL 85, 2418 (2000)].
- A few other groups:

. . .

- Torma, Pethick, et al, PRL 102, 245301 (2009); 103, 260403 (2009)
- Yin et al, PRA 79, 053636 (2009); 82, 013605 (2010).

Motivations (cont'd)

- Only lowest order (GMB, Heiselberg et al, Torma et al) or
- summation without pseudogap (feedback) effects included: Yin et al.
- Treatment of the particle-hole channel effects only at an average level
- Effects of even higher order ?
- Where to stop?

Theory without particle hole channel --Grand canonical Hamiltonian

$$H - \sum_{\sigma} \mu_{\sigma} N_{\sigma} = \sum_{\mathbf{k},\sigma} (\epsilon_{\mathbf{k}} - \mu_{\sigma}) a_{\mathbf{k},\sigma}^{\dagger} a_{\mathbf{k},\sigma}$$

+
$$\sum_{\mathbf{q},\mathbf{k},\mathbf{k}'} \frac{U_{eff}(\mathbf{k},\mathbf{k}') a_{\mathbf{q}/2+\mathbf{k},\uparrow}^{\dagger} a_{\mathbf{q}/2-\mathbf{k},\downarrow}^{\dagger} a_{\mathbf{q}/2-\mathbf{k}',\downarrow}^{\dagger} a_{\mathbf{q}/2+\mathbf{k}',\uparrow}}{q_{\mathbf{q}/2-\mathbf{k},\downarrow}^{\dagger} q_{\mathbf{q}/2-\mathbf{k}',\downarrow}^{\dagger} a_{\mathbf{q}/2+\mathbf{k}',\uparrow}}$$

BCS keeps only q=0 terms

Fermi gases: Take contact potential $U_{eff}(\mathbf{k}, \mathbf{k}') = U$ Cuprates: Separable potential: $U_{eff}(\mathbf{k}, \mathbf{k}') = U\varphi_{\mathbf{k}}\varphi_{\mathbf{k}'}$

 $\varphi_{\mathbf{k}} = \cos k_x - \cos k_y$

Pairing fluctuation theory -- Physical Picture PRL 81, 4708 (1998)

- Fermionic self energy has a pairing origin.
- Pairs can be either condensed or fluctuating.

T-matrix Formalism

Q, K -- 4-momentum

 $t_{pg}(Q) = | + \square + \square + \square + \square + \dots$ $t_{pg}(Q) = \frac{U}{1 + U\chi(Q)} \approx \frac{Z}{i\Omega - \Omega_q + \mu_{pair}}$

■ Fermion self-energy:

 $\chi(Q) = \sum_{K} G_{\mathbf{0}}(Q - K)G(K)$ $1 + U\chi(Q) = 0 = \mu_{pair}$ $(T \le T_c)$

Self Energy

Self consistent equations PRL 81, 4708 (1998) $\Sigma = -\Delta^2 G_0$

BCS form self energy \rightarrow BCS form of gap equation, with total gap Δ .

 $E_{\mathbf{k}} = \sqrt{\xi_{\mathbf{k}}^2 + \Delta_{\mathbf{k}}^2}$

$$1 + U \sum_{\mathbf{k}} \frac{1 - 2f(E_k)}{2E_k} \varphi_{\mathbf{k}}^2 = 0$$

$$n = 2 \sum_{K} G(K)$$

$$\Delta_{pg}^2 = -\sum_{Q} t_{pg}(Q)$$

$$t_{pg}(Q) \approx \frac{Z}{i\Omega - \Omega_q + \mu_{pair}}$$

Behavior of gaps vs T

--- Fraction of condensed pairs.

Typical behavior of Tc vs interaction

Particle-hole channel

• Lowest order induced interaction U_{ind}^{0}

$$=\sum_{K} G_0(K)G_0(K-P) = \sum_{\mathbf{k}} \frac{f(\xi_{\mathbf{k}}) - f(\xi_{\mathbf{k}-\mathbf{p}})}{\xi_{\mathbf{p}} - \xi_{\mathbf{k}-\mathbf{p}} - i\Omega_n}$$

 $U_{ind}^{0}(P) = -U^{2}\chi_{ph}^{0}(P) \qquad \qquad G_{0}^{-1}(K) = i\omega_{l} - \xi_{k}$

Real and imaginary parts

• After analytical continuation, $i\Omega_n \rightarrow \Omega + i0^+$

$$\chi_{ph}^{0}(\Omega + i0^{+}, \mathbf{p}) \equiv \operatorname{Re} \chi_{ph}^{0} + i\operatorname{Im} \chi_{ph}^{0}$$
$$\operatorname{Re} \chi_{ph}^{0}(\Omega, p) = \sum_{\mathbf{k}} \frac{f(\xi_{\mathbf{k}}) - f(\xi_{\mathbf{k}-\mathbf{p}})}{\xi_{\mathbf{k}} - \xi_{\mathbf{k}-\mathbf{p}} - \Omega}$$
$$\operatorname{Im} \chi_{ph}^{0}(\Omega, p) = \pi \sum_{\mathbf{k}} [f(\xi_{\mathbf{k}}) - f(\xi_{\mathbf{k}-\mathbf{p}})] \delta(\xi_{\mathbf{k}} - \xi_{\mathbf{k}-\mathbf{p}} - \Omega)$$
$$\operatorname{Re} \chi_{ph}^{0}(0, p) = \int_{0}^{\infty} \frac{k \mathrm{d}k}{2\pi^{2}} \frac{m}{p} f(\xi_{\mathbf{k}}) \ln \left| \frac{2k - p}{2k + p} \right|$$
$$\operatorname{Im} \chi_{ph}^{0}(\Omega, 0) = 0$$

Sum of particle-hole ladders

• One may sum over the infinite ladders of particle-hole scattering, i.e., the particle-hole t-matrix = total interaction

 $t_{ph}^{0}(P) = \frac{U}{1 + U\chi_{ph}^{0}(P)} = U_{eff}^{0}(P)$

Induced interaction:

Leading term *U* belongs to particle-particle channel

$$U_{ind}^{0}(P) = t_{ph}^{0}(P) - U = -\frac{U^{2}\chi_{ph}^{0}(P)}{1 + U\chi_{ph}^{0}(P)}$$

- To proceed, either replace U with t_{ph}^0 in particle-particle T-matrix $t_1^0(Q)$
- or
- Replace U with t_1^0 in the particle-hole T-matrix t_{ph}^0
- We take the 2nd route

Effective T-matrix t_2^0 : Diagrammatic resummation

(Replace U with t_1^0)

$$t_2^0 = \frac{t_1^0}{1 + t_1^0 \chi_{ph}^0} = \frac{1}{t_1^{0-1} + \chi_{ph}^0} = \frac{1}{U^{-1} + \chi^0 + \chi_{ph}^0}$$

Particle-hole susceptibility χ_{ph} in the presence of feedback effects

$$\chi_{ph}(P) = \chi_{ph}(K + K' - Q) = \sum_{K'} G(K') G_0(K' - P)$$

$$=\sum_{\mathbf{k}}\left[\frac{f(E_{\mathbf{k}})-f(\xi_{\mathbf{k}-\mathbf{p}})}{E_{\mathbf{k}}-\xi_{\mathbf{k}-\mathbf{p}}-i\Omega_{n}}u_{\mathbf{k}}^{2}-\frac{1-f(E_{\mathbf{k}})-f(\xi_{\mathbf{k}-\mathbf{p}})}{E_{\mathbf{k}}+\xi_{\mathbf{k}-\mathbf{p}}+i\Omega_{n}}v_{\mathbf{k}}^{2}\right]$$

 U_{eff} contains both Ω and momentum dependence, in general is no longer a separable potential.

Effective T-matrix t_2 : Diagrammatic resummation

$$t_2 = \frac{t_1}{1 + t_1 \chi_{ph}} = \frac{1}{t_1^{-1} + \chi_{ph}} = \frac{1}{U^{-1} + \chi + \chi_{ph}}$$

Structure of $\chi_{ph}(Q)$

Here we use Q for P

At unitarity and T=Tc

Re $\chi_{ph}^{0}(\Omega, q)$

Im $\chi_{ph}^{0}(\Omega, q)$

Existence of a gap makes $\chi_{ph}(Q)$ more complex

rface plot of Re $\chi_{ph}(\Omega,q)$ at $1/k_Fa=0$ and $T/T_c=1$ for contact potential, $T_c/T_F=0.2557$, $\Delta=0.6413$, $\mu=0.6198^{e}$ plot of Im $\chi_{ph}(\Omega,q)$ at $1/k_Fa=0$ and $T/T_c=1$ for contact potential, $T_c/T_F=0.2557$, $\Delta=0.6413$, $\mu=0.6198^{e}$

Temperature dependence

3D homogeneous, $1/k_{F}a=0$, $q/k_{F}=0.1$, $\mu=0.7365$, $\Delta=0.65$, contact potential

3D homogeneous, $1/k_{\mu}a=0$, $q/k_{\mu}=0.01$, $\mu=0.7365$, $\Delta=0.65$, contact potential

 $\chi_{ph}^{0}(\Omega, q)$

Momentum dependence

3D homogeneous, $1/k_{\mu}a=0$, T/Tc=1, $\mu=0.7365$, $\Delta=0.65$, contact potential

4

6

Momentum dependence of $\chi_{ph}(\Omega=0)$

Angular average of $\chi_{ph}(K+K)$

• Zero momentum Q=0 Cooper pairs:

 $P = K + K' = (i\Omega, k + k').$

 Choose Ω = 0, and k = k' --- On-shell scattering, then average over angles

 $p = |\mathbf{k} + \mathbf{k}'| = 2k\sqrt{1 + \cos\theta}$

- Off-shell scattering leads to imaginary part of $\chi_{ph} \rightarrow$ imaginary part and frequency dependence in order parameter.
- Further (level 2) average over a range of k such that $E_k < (E_k)_{min} + \Delta$

$$\begin{split} (E_{\mathbf{k}})_{min} &= \Delta & \text{if } \mu > 0. \\ (E_{\mathbf{k}})_{min} &= \sqrt{\mu^2 + \Delta^2} & \text{if } \mu < 0. \end{split}$$

Effect on zero T gap

Effects on Tc

 T_c/T_F is suppressed from 0.255 to 0.215 at unitarity

Hartree self-energy not included in this calculation.

 χ_{ph} effects diminish quickly in the BEC regime where $\mu < 0$.

Results agree in the BCS limit.

Effects on $2\Delta(0)/T_c$

• Strong T dependence \rightarrow ratio change.

3D homo, contact potential, unitary, Tc=0.2557, angular average of $\chi_{ph}(0,q)$

Where to stop?

Summary

- We have studied the effects of particle-hole channel on BCS-BEC crossover and compared with lower level approximations.
- We included the mode-coupling effects on the particle-hole susceptibility χ_{ph} , which leads to substantial differences.
- Strong temperature and momentum/frequency dependences of χ_{ph} are discovered. Away from the BCS limit, $\Delta(0)$ and T_c are suppressed differently.
- The particle-hole channel effects diminish quickly once the system enters BEC regime.
- Full-fledged calculations without taking simple angular average and setting $\Omega=0$ are needed.
- It is unclear whether higher order T-matrices will make a difference or not.

Thank you !