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Motivations

Fermionic superfluidity concerns pairing -— particle-particle channel.
Particle-hole channel causes chemical potential shift, often neglected.

Gorkov -- Melik-Barkhudarov (GMB) [Sov. Phys. JETP 13, 1018 (1961)]

showed a big effect: Suppression of both Tc and A(O) by a factor ot
(4e)13 =~ 2.22. -- lowest order effect.

Berk and Schrieffer studied the “effects of ferromagnetic spin
correlations on superconductivity” [PRL 17, 433 (1966)].

GMB effect neglected until atomic Fermi gases [Heiselberg et al., PRL 85,
2418 (2000)].

A few other groups:
— Torma, Pethick, et al, PRL 102, 245301 (2009); 103, 260403 (2009)

Yin et al, PRA 79, 053636 (2009); 82, 013605 (2010).



Motivations (cont’d)

Only lowest order ( )
or
summation without pseudogap (feedback) effects included:

Treatment of the particle-hole channel effects only at an
average level

Effects of even higher order ?
Where to stop?



Theory without particle hole channel --
Grand canonical Hamiltonian
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Fermi gases: Take contact potential Uy f(k, KY=U
Cuprates: Separable potential: Ul ¢ r(k, k') = Uy

@k = COS kz — COS ky



Pairing fluctuation theory -- Physical
Picture

PRL 81, 4708 (1998)

= Fermionic self energy has a pairing origin.
= Pairs can be either condensed or fluctuating.




T-matrix Formalism

Q, K -- 4-momentum
B [-matrix
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Self Energy
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Self consistent equations

PRL 81, 4708 (1998)

BCS form self energy - BCS form of gap equation,
with total gap A.
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Gaps (meV)
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Behavior of gaps vs T

. ; . ' How to determine Tc?

SC  --- Fraction of
A\ 2  condensed pairs.




Typical behavior of Tc vs interaction
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Particle-hole channel

e Lowest order induced interaction Umd
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Real and imaginary parts

« After analytical continuation, IQ2, = Q + 10*

Xgh(Q + 07, p) = Re Xgh + «Im Xgh
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Sum of particle-hole ladders

 One may sum over the infinite ladders of particle-hole
scattering, I.e., the particle-hole t-matrix = total interaction
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|ndUCed Intel‘aCtlon Leading term U be|0ngs to
particle-particle channel

U?xp,(P)
1+ ngh(P)

Uphg(P) = t0,(P) — U = —

To proceed, either replace U with ), in particle-particle T-matrix £3(Q)
. or
Replace U with £ in the particle-hole T-matrix t;’,,,

We take the 2nd route
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Effective T-matrix tg: Diagrammatic
resummation

(Replace U with #9)




Particle-hole susceptibility y,, in the
presence of feedback effects
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U.¢ contains both Q and momentum dependence, in general is no
longer a separable potential.



Effective T-matrix t, : Diagrammatic
resummation
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Structure of x,,,(Q)

Here we use Q for P PR
we use Q At unitarity and T=Tc

surface plot of Re ;,(©,q) at k.a=0 and T/T =1 for contact potential, T /T =0.2557, A=0.6413, 4=0.6198 Surface plot of Im %o4(€.) at 1k.a=0 and TIT =1 for contact potential, T /T=0.2557, A=0.6413, 4=0.6138
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Existence of a gap makes y,,(Q) more
complex

Rexph(Q,q)

rface plot of Re x,,(€,q) at 1/ka=0 and T/T =1 for contact potential, T /T.=0.2557, A=0.6413, =0.6198° piotiof bm i, (,q) at T a=0 and TIT =1 for contact potential, T /1.=0.2557, A=0.6413, 1i=0.6131

. Imxph(Q,q)




Temperature dependence

3D homogeneous, 1/k,a=0, ¢/k,=0.1, u=0.7365, A=0.65, contact potential
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Momentum dependence

3D homogeneous, lfk,‘azo, T/Te=0.3, u=0.7365, A=0.65, contact potential
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3D homogeneous, 1/k,a=0, T/Te=1, u=0.7365, A=0.65, contact potential
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Momentum dependence of y,,(€2=0)
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Angular average of y,,(K+K’)

- <Yph>

Zero momentum Q=0 Cooper pairs:
P = K+K’ = (iQ, k+k’).

Choose Q2 = 0, and k = k’ --- On-shell scattering, then average over
angles

= |k + k'| = 2kv/1 + cos @

Off-shell scattering leads to imaginary part of y,, > imaginary part
and frequency dependence in order parameter.

Further (level 2) average over a range of k such that E, < (E,),,,+A

(Ek)m‘in = A if u> 0.
(Bi)min = \/u? + &2 if p<0.




Effect on zero T gap

| T T
— wlo Xoh

— w/ <x|i> level 1

— w/ KApr™ level 2

Level 1: Average at Fermi level
only

Level 2. Average over a range
of k near Fermi level

%pn €ffects diminish quickly
in the BEC regime where
u<o0.



TJE,

Effects on Tc

T /T¢ is suppressed from
0.255 to 0.215 at unitarity

2 - — w/o Xoh .

Hartree self-energy not
included in this calculation.

i 0
---- w/ <y _>Level
B ph

1 7/ Kon™> Level 2

0.02 %pn €ffects diminish quickly
in the BEC regime where
0.01} h<0.
Results agree in the BCS
0 limit.




Re <xph(0, q=lk+k’)>1 _ .

Effects on 2A(0)/T.

o Strong T dependence - ratio change.

3D homo, contact potential, unitary, Tc=0.2557, angular average of xph(O,q)
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Where to stop?




Summary

We have studied the effects of particle-hole channel on BCS-BEC
crossover and compared with lower level approximations.

We included the mode-coupling effects on the particle-hole
susceptibility y,,, which leads to substantial differences.

Strong temperature and momentum/frequency dependences of y,,
are discovered. Away from the BCS limit, A(0) and T, are
suppressed differently.

The particle-hole channel effects diminish quickly once the system
enters BEC regime.

Full-fledged calculations without taking simple angular average and
setting Q=0 are needed.

It is unclear whether higher order T-matrices will make a difference
or not.



Thank you !



