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Outline
 Introduction to topological orders/Symmetry 

Protected Topological orders

 Classification of 1D SPT orders (focusing on D2+T 
symmetry) and their realization in S=1 spin 
chains/ladders

 How to measure the SPT orders experimentally 



Phases of matter: different orders (I)
 Symmetry-breaking orders (Landau)

 Magnets:  rotation symmetry breaking
 Solid: translation symmetry breaking
 Superconductor: U(1) symmetry breaking
 …

Different phases have different symmetry



Phases of matter: different orders (II)

 Topological order (intrinsic)
 Non-symmetry-breaking
 Edge states, ground state degeneracy, fractional excitations...
 Close relation with the topology (of the manifold, group,…)

 Long-range entanglement
 Examples:

 Fractional Quantum Hall states
 Chiral spin liquid states
 String-net condensate states

X.-G. Wen, Phys. Rev. B 40, 7387 (1989); Int. J. Mod. Phys. B 4, 239 (1990).



No topological order in 1D without symmetry

 All 1D gapped states are short-range entangled
 All 1D gapped states can continuously deforms 

into direct product states
 No phase transition between all 1D gapped states

Without symmetry,
There is only one gaped phase in 1D.

Chen, Gu, Wen, Phys. Rev. B 83, 035107 (2011)



With symmetry
 Definition of phase and phase transition

 All the states in the same phase can be continuously 
transformed into each other by (symmetric) Local Unitary 
transformations

 Different states with the same symmetry may belong to 
different phases

 When symmetry is absent, the difference between different    
symmetric phases disappears

Symmetry protected topological order
(No intrinsic topological order in 1D)

Chen, Gu, Wen, Phys. Rev. B 82, 155138 (2010)



Example: SPT order in 1D
 S=1 model with parity, and Rx, RyT, RzT symmetry

 Haldane phase (small U,B)

 Large U (trivial) phase
U→∞: Ψ=|0,0,……0>, Sz|0>=0
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Gu, Wen, PRB 80, 155131 (2009)  

Above two phases have the same symmetry, they are distinguished by 
SPT order (or their different end states).



The case without symmetry protection
 Symmetry breaking perturbations

Pollmann,et.al. PRB 81, 064439 (2010)

Entanglement entropy Entanglement spectrum



Symmetry is crucial in 1D 

 Symmetry protect the gapped nontrivial phases

 How to classify all the gapped symmetric nontrivial 
phases? 
Entanglement spectrum?   not sufficient! 
Projective representations of the symmetry group.



Example
 S=1 Model

zyxnmSSSSS mnnmmn ,,,, 

 :   rotation between Sy and Sxz,   Sz and Sxy

where

symmetry group:  D2+T

:   Ising-like0

:   XY-like
2

 



Phase diagram
 Two nontrivial phases
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Classification of SPT orders in 1D
 MPS form for gapped states in 1D

 the MPS is invariant under symmetry group G

 M(g) projective representation (representation of end states)

Chen, Gu, Wen, Phys. Rev. B 83, 035107 (2011)

G. Vidal, Phys. Rev. Lett. 91, 147902 (2003)
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Projective representations of symmetry group

 Multiplication up to a phase factor

 Linear representations

 Projective representation: 
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Not important if the system
has no translation symmetry



Projective representations
 Equivalence class

 eiθ'(g1,g2) and eiθ(g1,g2) belong to the same class
 Each class ω ∈H2(G,U(1)) projective representation

 Projective representation SPT phase
 Example: SO(3) has two classes of projective representations

integer spin:         linear REP
SO(3) 

half-integer spin:  nontrivial projective REP
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Classification of SPT orders with different 
symmetries

 on-site symmetry G  ω
 on-site symmetry G + translational symmetry (α,ω)

Chen, Gu, Wen, Phys. Rev. B 83, 035107 (2011); arXiv:1103.3323



Questions

 Is the classification complete? YES!
 Symmetry operators
 Local unitary transformations

 Does the projective representations give complete 
information of all the SPT phases? YES!!

We will illustrate it by spin models with D2+T symmetry

 Is the classification complete? 

 Does the projective representations give complete 
information of all the SPT phases? 



S=1 spin chains with D2+T symmetry
 General Hamiltonian

 Difficult to study directly
 Symmetry breaking phases: well understood and boring
 We will focus on symmetric (SPT)  phases



General properties of SPT phases
 Physical degrees of freedom

linear representations of D2+T 

 Edge (or internal) degrees of freedom

projective representations of D2+T



How to calculate the projective 
representations

 Central extension of G  R(G) G ≈ R(G)/C
 Linear Reps of R(G)  projective Reps of G
 Example: projective representation of D2 group

projection:

E,P2  E
P,P3      Rz

Q,P2Q   Rx
PQ,P3Q Ry

L. L. Boyle and Kerie F. Green, Mathematical and Physical Sciences, A 288, 237 (1978)

D2 ={E, Rx , Ry , Rz}

R(D2)={E, P , Q , PQ,
P2,Q2,P2Q,P3Q}



Combined symmetry: D2h=D2+T

16 Projective representations: description of free-edge states.

arXiv:1101.5680;   arXiv:1105.6021



Construct MPS with known edge states
 S=1 AKLT model (Haldane phase)

 Parent Hamiltonian (sum of projectors)

 Simpler model in the same phase
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S=1 spin chains with D2+T symmetry
 SPT phases and their Hamiltonians

 Trivial phase (ground state Ψ=|α, α,…,α > , α=x, y, z)

 T0 phase (the usual Haldane phase)

 Tx phase
 Ty phase
 Tz phase
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Phase transitions between different phases
 Model Hamiltonian

 1st order transition between different nontrivial SPT phases
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Realization of other phases in spin ladders

 Direct product of two spin chains

1 2 3 3M M M M  

Examples:

9 11 7 7E E E E  

9 13 1 1E E E E  

...

All the 16 phases are realized.



Distinguish different phases from Edge states

 Small perturbations: magnetic field

 Bulk: gapped singlet,   no response
 Edge: degenerate (like impurity spins) 

 Linear response（first order perturbation theory)
 Will the degeneracy be split by H' ?

T0 phase: Yes! Bx, By, Bz will polarize the end spins and  
split the ground state degeneracy.

Tx,Ty, Tz phases?

 ' x x y y z z
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Tx phase
 Tx phase: Will the magnetic field split the edge degeneracy?

 depends on direction of B
 Numerical result (exact diagonalization):

< ∑ Si
x>   0,0,±1, 

< ∑ Si
y>   0,0,0,0,

< ∑ Si
z>   0,0,0,0.
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Ty, Tz phases
 Ty phase

< ∑ Si
x>    0,0,0,0,

< ∑ Si
y>    0,0,±1, 

< ∑ Si
z>   0,0,0,0.

 Tz phase
< ∑ Si

x>    0,0,0,0,
< ∑ Si

y>    0,0,0,0,
< ∑ Si

z>    0,0,±1.



Symmetry reason
 Effective operators and physical perturbations

 For 2 by 2 MPS (2-fold edge states), only three Pauli 
operators that split the degeneracy of the ground states

 The Pauli operators form linear reps of the SG
 The physical operators also form linear reps of the SG

  σx ~ O, they have the same matrix elements on 
the ground state subspace (up to a constant factor)

 For example, in Tx phase:  σx ~ Sx, σy ~ Sxz,    σz ~ Sxy

1( ) ( ) ( )gM g M g      
1( ) ( ) ( )gu g Ou g O O 

( ) ( )O  



Experimental measurements (I) 

 Curie’s law: divergence of magnetic susceptibility 
at low temperatures
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Lattice structure of spin chain (LiVSi2O6)

VO6      V3+ S=1

edge states: magnetic impurities



Experimental measurements (II)
 No edge states in the trivial phase 

gx, gy, gz ≈ 0
 Nontrivial phases:  

 In T0 phase: gx, gy, gz are finite
 In Tx phase: gx is finite, gy , gz ≈ 0
 In Ty phase: gy is finite, gx , gz ≈ 0
 In Tz phase: gz is finite, gx , gy ≈ 0



Other perturbations
 Perturbations by Sα are not sufficient to distinguish all the 

SPT phases. We need perturbations associated to the 
quadrupole operators Sαβ ,

 From the different responses of the edge states to 
perturbations of Bx, By, Bz, and         , … all the phases can 
be distinguished.
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Recent progress 
 Generalization to higher dimensions

 1D: H2(G, U(1))
 2D: H3(G, U(1))
 3D:  H4(G, U(1))

 Reference:
2D toy model realizing nontrivial H3(Z2, U(1))
arXiv:1106.4752

Classifying dD SPT phase through topological nonlinear
sigma model
arXiv:1106.4772



Conclusion 
 There are 16 different SPT phases in 1D protected by D2+T 

symmetry
 They can be realized with S=1 spin chains and spin ladders
 All the SPT phases are completely characterized by their edge spins 

(projective representations) and are experimentally distinguishable.



Thanks for attention!


