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Outline
 Introduction to topological orders/Symmetry 

Protected Topological orders

 Classification of 1D SPT orders (focusing on D2+T 
symmetry) and their realization in S=1 spin 
chains/ladders

 How to measure the SPT orders experimentally 



Phases of matter: different orders (I)
 Symmetry-breaking orders (Landau)

 Magnets:  rotation symmetry breaking
 Solid: translation symmetry breaking
 Superconductor: U(1) symmetry breaking
 …

Different phases have different symmetry



Phases of matter: different orders (II)

 Topological order (intrinsic)
 Non-symmetry-breaking
 Edge states, ground state degeneracy, fractional excitations...
 Close relation with the topology (of the manifold, group,…)

 Long-range entanglement
 Examples:

 Fractional Quantum Hall states
 Chiral spin liquid states
 String-net condensate states

X.-G. Wen, Phys. Rev. B 40, 7387 (1989); Int. J. Mod. Phys. B 4, 239 (1990).



No topological order in 1D without symmetry

 All 1D gapped states are short-range entangled
 All 1D gapped states can continuously deforms 

into direct product states
 No phase transition between all 1D gapped states

Without symmetry,
There is only one gaped phase in 1D.

Chen, Gu, Wen, Phys. Rev. B 83, 035107 (2011)



With symmetry
 Definition of phase and phase transition

 All the states in the same phase can be continuously 
transformed into each other by (symmetric) Local Unitary 
transformations

 Different states with the same symmetry may belong to 
different phases

 When symmetry is absent, the difference between different    
symmetric phases disappears

Symmetry protected topological order
(No intrinsic topological order in 1D)

Chen, Gu, Wen, Phys. Rev. B 82, 155138 (2010)



Example: SPT order in 1D
 S=1 model with parity, and Rx, RyT, RzT symmetry

 Haldane phase (small U,B)

 Large U (trivial) phase
U→∞: Ψ=|0,0,……0>, Sz|0>=0
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Gu, Wen, PRB 80, 155131 (2009)  

Above two phases have the same symmetry, they are distinguished by 
SPT order (or their different end states).



The case without symmetry protection
 Symmetry breaking perturbations

Pollmann,et.al. PRB 81, 064439 (2010)

Entanglement entropy Entanglement spectrum



Symmetry is crucial in 1D 

 Symmetry protect the gapped nontrivial phases

 How to classify all the gapped symmetric nontrivial 
phases? 
Entanglement spectrum?   not sufficient! 
Projective representations of the symmetry group.



Example
 S=1 Model

zyxnmSSSSS mnnmmn ,,,, 

 :   rotation between Sy and Sxz,   Sz and Sxy

where

symmetry group:  D2+T

:   Ising-like0

:   XY-like
2

 



Phase diagram
 Two nontrivial phases
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Classification of SPT orders in 1D
 MPS form for gapped states in 1D

 the MPS is invariant under symmetry group G

 M(g) projective representation (representation of end states)

Chen, Gu, Wen, Phys. Rev. B 83, 035107 (2011)

G. Vidal, Phys. Rev. Lett. 91, 147902 (2003)
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Projective representations of symmetry group

 Multiplication up to a phase factor

 Linear representations

 Projective representation: 
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Not important if the system
has no translation symmetry



Projective representations
 Equivalence class

 eiθ'(g1,g2) and eiθ(g1,g2) belong to the same class
 Each class ω ∈H2(G,U(1)) projective representation

 Projective representation SPT phase
 Example: SO(3) has two classes of projective representations

integer spin:         linear REP
SO(3) 

half-integer spin:  nontrivial projective REP
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Classification of SPT orders with different 
symmetries

 on-site symmetry G  ω
 on-site symmetry G + translational symmetry (α,ω)

Chen, Gu, Wen, Phys. Rev. B 83, 035107 (2011); arXiv:1103.3323



Questions

 Is the classification complete? YES!
 Symmetry operators
 Local unitary transformations

 Does the projective representations give complete 
information of all the SPT phases? YES!!

We will illustrate it by spin models with D2+T symmetry

 Is the classification complete? 

 Does the projective representations give complete 
information of all the SPT phases? 



S=1 spin chains with D2+T symmetry
 General Hamiltonian

 Difficult to study directly
 Symmetry breaking phases: well understood and boring
 We will focus on symmetric (SPT)  phases



General properties of SPT phases
 Physical degrees of freedom

linear representations of D2+T 

 Edge (or internal) degrees of freedom

projective representations of D2+T



How to calculate the projective 
representations

 Central extension of G  R(G) G ≈ R(G)/C
 Linear Reps of R(G)  projective Reps of G
 Example: projective representation of D2 group

projection:

E,P2  E
P,P3      Rz

Q,P2Q   Rx
PQ,P3Q Ry

L. L. Boyle and Kerie F. Green, Mathematical and Physical Sciences, A 288, 237 (1978)

D2 ={E, Rx , Ry , Rz}

R(D2)={E, P , Q , PQ,
P2,Q2,P2Q,P3Q}



Combined symmetry: D2h=D2+T

16 Projective representations: description of free-edge states.

arXiv:1101.5680;   arXiv:1105.6021



Construct MPS with known edge states
 S=1 AKLT model (Haldane phase)

 Parent Hamiltonian (sum of projectors)

 Simpler model in the same phase
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S=1 spin chains with D2+T symmetry
 SPT phases and their Hamiltonians

 Trivial phase (ground state Ψ=|α, α,…,α > , α=x, y, z)

 T0 phase (the usual Haldane phase)

 Tx phase
 Ty phase
 Tz phase
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Phase transitions between different phases
 Model Hamiltonian

 1st order transition between different nontrivial SPT phases
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Realization of other phases in spin ladders

 Direct product of two spin chains

1 2 3 3M M M M  

Examples:

9 11 7 7E E E E  

9 13 1 1E E E E  

...

All the 16 phases are realized.



Distinguish different phases from Edge states

 Small perturbations: magnetic field

 Bulk: gapped singlet,   no response
 Edge: degenerate (like impurity spins) 

 Linear response（first order perturbation theory)
 Will the degeneracy be split by H' ?

T0 phase: Yes! Bx, By, Bz will polarize the end spins and  
split the ground state degeneracy.

Tx,Ty, Tz phases?

 ' x x y y z z
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Tx phase
 Tx phase: Will the magnetic field split the edge degeneracy?

 depends on direction of B
 Numerical result (exact diagonalization):

< ∑ Si
x>   0,0,±1, 

< ∑ Si
y>   0,0,0,0,

< ∑ Si
z>   0,0,0,0.
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Ty, Tz phases
 Ty phase

< ∑ Si
x>    0,0,0,0,

< ∑ Si
y>    0,0,±1, 

< ∑ Si
z>   0,0,0,0.

 Tz phase
< ∑ Si

x>    0,0,0,0,
< ∑ Si

y>    0,0,0,0,
< ∑ Si

z>    0,0,±1.



Symmetry reason
 Effective operators and physical perturbations

 For 2 by 2 MPS (2-fold edge states), only three Pauli 
operators that split the degeneracy of the ground states

 The Pauli operators form linear reps of the SG
 The physical operators also form linear reps of the SG

  σx ~ O, they have the same matrix elements on 
the ground state subspace (up to a constant factor)

 For example, in Tx phase:  σx ~ Sx, σy ~ Sxz,    σz ~ Sxy

1( ) ( ) ( )gM g M g      
1( ) ( ) ( )gu g Ou g O O 

( ) ( )O  



Experimental measurements (I) 

 Curie’s law: divergence of magnetic susceptibility 
at low temperatures
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Lattice structure of spin chain (LiVSi2O6)

VO6      V3+ S=1

edge states: magnetic impurities



Experimental measurements (II)
 No edge states in the trivial phase 

gx, gy, gz ≈ 0
 Nontrivial phases:  

 In T0 phase: gx, gy, gz are finite
 In Tx phase: gx is finite, gy , gz ≈ 0
 In Ty phase: gy is finite, gx , gz ≈ 0
 In Tz phase: gz is finite, gx , gy ≈ 0



Other perturbations
 Perturbations by Sα are not sufficient to distinguish all the 

SPT phases. We need perturbations associated to the 
quadrupole operators Sαβ ,

 From the different responses of the edge states to 
perturbations of Bx, By, Bz, and         , … all the phases can 
be distinguished.
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Recent progress 
 Generalization to higher dimensions

 1D: H2(G, U(1))
 2D: H3(G, U(1))
 3D:  H4(G, U(1))

 Reference:
2D toy model realizing nontrivial H3(Z2, U(1))
arXiv:1106.4752

Classifying dD SPT phase through topological nonlinear
sigma model
arXiv:1106.4772



Conclusion 
 There are 16 different SPT phases in 1D protected by D2+T 

symmetry
 They can be realized with S=1 spin chains and spin ladders
 All the SPT phases are completely characterized by their edge spins 

(projective representations) and are experimentally distinguishable.



Thanks for attention!


