Symmetry protected topological phases: realization in spin chains and spin ladders

Zheng-Xin Liu

Institute of Advance Study of Tsinghua University

QC11, HKUST, July 5, 2011

Collaborators

Xiao-Gang Wen Xie Chen Min Liu

Tai-Kai Ng Yi Zhou

MIT MIT Tsinghua U

HKUST ZheJiang U

Reference : arXiv:1101.5680 (to appear on PRB); arXiv:1105.6021

Outline

 Introduction to topological orders/Symmetry Protected Topological orders

Classification of 1D SPT orders (focusing on D₂+T symmetry) and their realization in S=1 spin chains/ladders

How to measure the SPT orders experimentally

Phases of matter: different orders (I)

- Symmetry-breaking orders (Landau)
 - Magnets: rotation symmetry breaking
 - » Solid: translation symmetry breaking
 - > Superconductor: U(1) symmetry breaking

Different phases have different symmetry

Phases of matter: different orders (II)

X.-G. Wen, Phys. Rev. B 40, 7387 (1989); Int. J. Mod. Phys. B 4, 239 (1990).

- Topological order (intrinsic)
 - » Non-symmetry-breaking
 - > Edge states, ground state degeneracy, fractional excitations...
 - Close relation with the topology (of the manifold, group,...)

- Long-range entanglement
- > Examples:
 - Fractional Quantum Hall states
 - Chiral spin liquid states
 - String-net condensate states

No topological order in 1D without symmetry

- All 1D gapped states are short-range entangled
- All 1D gapped states can continuously deforms into direct product states
- No phase transition between all 1D gapped states

Without symmetry, There is only one gaped phase in 1D.

Chen, Gu, Wen, Phys. Rev. B 83, 035107 (2011)

With symmetry

- Definition of phase and phase transition
 - All the states in the same phase can be continuously transformed into each other by (symmetric) Local Unitary transformations
 - Different states with the same symmetry may belong to different phases
 - When symmetry is absent, the difference between different symmetric phases disappears

Symmetry protected topological order

(No intrinsic topological order in 1D)

Chen, Gu, Wen, Phys. Rev. B 82, 155138 (2010)

Example: SPT order in 1D

• S=1 model with parity, and R_x , R_yT , R_zT symmetry $H = \sum_i [S_i \cdot S_{i+1} + U(S_i^z)^2 + BS_i^x]$

Haldane phase (small U, B)

Large U (trivial) phase

 $U \rightarrow \infty$: $\Psi = |0, 0, \dots, 0>, S^z|0 \ge = 0$

Above two phases have the same symmetry, they are distinguished by SPT order (or their different **end states**).

Gu, Wen, PRB 80, 155131 (2009)

The case without symmetry protection

Symmetry breaking perturbations

Pollmann, et.al. PRB 81, 064439 (2010)

Symmetry is crucial in 1D

Symmetry protect the gapped nontrivial phases

- How to classify all the gapped symmetric nontrivial phases?
 - Entanglement spectrum? not sufficient! Projective representations of the symmetry group.

Example

• S=1 Model

$$H = \sum_{i} \left[\cos \theta S_{x,i} S_{x,i+1} + \sin \theta [\cos \phi (S_{y,i} S_{y,i+1} + S_{z,i} S_{z,i+1}) + \sin \phi (S_{xz,i} S_{xz,i+1} + S_{xy,i} S_{xy,i+1})] \right]$$

where

$$S_{mn} = S_m S_n + S_n S_m, \qquad m, n = x, y, z$$

symmetry group: D₂+T

- $\theta = 0$: Ising-like
- $\theta = \frac{\pi}{2}$: XY-like
 - ϕ : rotation between S_y and S_{xz} , S_z and S_{xy}

Phase diagram

Two nontrivial phases

Classification of SPT orders in 1D

MPS form for gapped states in 1D

$$\left|\phi\right\rangle = \sum_{\{m_{i}\}} \operatorname{Tr}\left[\left(A_{1}^{m_{1}}\left|m_{1}\right\rangle\right)\left(A_{2}^{m_{2}}\left|m_{2}\right\rangle\right)...\left(A_{N}^{m_{N}}\left|m_{N}\right\rangle\right)\right]$$

G. Vidal, Phys. Rev. Lett. 91, 147902 (2003)
♦ the MPS is invariant under symmetry group G

 $\widehat{g} | \phi
angle \propto | \phi
angle$

 $\hat{g}A^{m} = [u(g)]_{mm}, A^{m'} = e^{i\alpha(g)}M(g)^{+}A^{m}M(g)$

> M(g) projective representation (representation of end states)

Chen, Gu, Wen, Phys. Rev. B 83, 035107 (2011)

Projective representations of symmetry group

Multiplication up to a phase factor

$$\sum_{m'} u(g_1)_{mm'} A^{m'} = e^{i\alpha(g_1)} M(g_1)^+ A^m M(g_1)$$

$$\sum_{m'} u(g_2)_{mm'} A^{m'} = e^{i\alpha(g_2)} M(g_2)^+ A^m M(g_2)$$

$$\sum_{m'} u(g_1g_2)_{mm'} A^{m'} = e^{i\alpha(g_1g_2)} M(g_1g_2)^+ A^m M(g_1g_2)$$

Linear representations

 $u(g_1)u(g_2) = u(g_1g_2), \quad e^{i\alpha(g_1)}e^{i\alpha(g_2)} = e^{i\alpha(g_1g_2)}$

> Projective representation:

Not important if the system has no translation symmetry

$$M(g_1)M(g_2) = M(g_1g_2)e^{i\theta(g_1,g_2)}$$

Projective representations

Equivalence class

 $M(g)' = M(g)e^{i\varphi(g)}$ $M(g_1)'M(g_2)' = M(g_1g_2)'e^{i\theta'(g_1,g_2)}$

$$e^{i\theta'(g_1,g_2)} = e^{i\theta(g_1,g_2)} \frac{e^{i\varphi(g_1)}e^{i\varphi(g_1)}}{e^{i\varphi(g_1g_2)}}$$

> $e^{i\theta'(g_{1,g_{2}})}$ and $e^{i\theta(g_{1,g_{2}})}$ belong to the same class > Each class $\omega \in H^2(G, U(1)) \Leftrightarrow$ projective representation ◆ Projective representation ⇔ SPT phase • Example: SO(3) has two classes of projective representations - integer spin: linear REP *SO(3)* half-integer spin: nontrivial projective REP

Classification of SPT orders with different symmetries

- on-site symmetry $G \rightarrow \omega$
- on-site symmetry G + translational symmetry \rightarrow (α, ω)

Symmetry of Hamiltonian	Number of Different Phases
None	1
SO(3)	2
D_2	2
T	2
SO(3) + T	4
$D_2 + T$	16
Trans. $+U(1)$	∞
Trans. $+SO(3)$	2
Trans. $+D_2$	$4 \times 2 = 8$
Trans. $+ P$	4
Trans. $+T$	2
Trans. $+ P + T$	8
Trans. $+SO(3) + P$	8
Trans. $+D_2 + P$	128
Trans. $+SO(3) + T$	4
Trans. $+D_2 + T$	64
Trans. $+SO(3) + P + T$	16
Trans. $+D_2 + P + T$	1024

Chen, Gu, Wen, Phys. Rev. B 83, 035107 (2011); arXiv:1103.3323

Questions

- Is the classification complete? YES!
 - > Symmetry operators
 - Local unitary transformations
- Does the projective representations give complete information of all the SPT phases? YES!!

We will illustrate it by spin models with D_2+T symmetry

S=1 spin chains with D_2 +T symmetry

General Hamiltonian

$$H_{D_{2h}} = \sum_{i} [a_{1}S_{x,i}^{2}S_{x,j}^{2} + a_{2}(S_{x,i}^{2}S_{y,j}^{2} + S_{y,i}^{2}S_{x,j}^{2}) + a_{3}S_{y,i}^{2}S_{y,j}^{2} + a_{4}(S_{x,i}^{2}S_{z,j}^{2} + S_{z,i}^{2}S_{x,j}^{2}) + a_{5}S_{z,i}^{2}S_{z,j}^{2} + a_{6}(S_{y,i}^{2}S_{z,j}^{2} + S_{z,i}^{2}S_{y,j}^{2}) + b_{1}S_{x,i}S_{x,j} + b_{2}S_{yz,i}S_{yz,j} + c_{1}S_{y,i}S_{y,j} + c_{2}S_{xz,i}S_{xz,j} + d_{1}S_{z,i}S_{z,j} + d_{2}S_{xy,i}S_{xy,j} + e_{1}S_{x,i}^{2} + e_{2}S_{y,i}^{2} + e_{3}S_{z,i}^{2}].$$

- > Difficult to study directly
- > Symmetry breaking phases: well understood and boring
- » We will focus on symmetric (SPT) phases

General properties of SPT phases

Physical degrees of freedom

linear representations of D₂+T

Edge (or internal) degrees of freedom

projective representations of D₂+T

How to calculate the projective representations

- Central extension of $G \rightarrow R(G)$ $G \approx R(G)/C$
- Linear Reps of $R(G) \Leftrightarrow$ projective Reps of G
- Example: projective representation of D_2 group

 $D_{2} = \{E, R_{x}, R_{y}, R_{z}\}$ $R(D_{2}) = \{E, P, Q, PQ, P^{2}, Q^{2}, P^{2}Q, P^{3}Q\}$

projection: $E,P^2 \rightarrow E$ $P,P^3 \rightarrow R_z$ $Q,P^2Q \rightarrow R_x$ $PQ,P^3Q \rightarrow R_y$ TABLE III: Multiplication table of $R_1(D_2)$. Notice that $P^4 = Q^4 = E$, $P^2 = Q^2$ and $QP = P^3Q$.

	E	P^2	P^3	P	Q	P^2Q	PQ	$P^{3}Q$		
E	E	P^2	P^3	P	Q	P^2Q	PQ	$P^{3}Q$		
P^2	P^2	E	P	P^3	P^2Q	Q	P^3Q	PQ		
P^3	P^3	P	P^2	E	P^3Q	PQ	Q^{-}	P^2Q		
P	P	P^3	E	P^2	PQ	$P^3 Q$	P^2Q	Q^{-}		
Q	Q	P^2Q	PQ	P^3Q	P^{2}	E	P	P^3		
P^2Q	P^2Q	Q^{\dagger}	$P^3 Q$	PQ	E	P^2	P^3	P		
PQ	PQ	$P^{3}Q$	$P^2 Q$	Q	P^3	P	P^2	E		
$P^3 Q$	$P^{3}Q$	PQ	Q^{\dagger}	P^2Q	P	P^3	E	P^2		
TABLE V: Projection from $R_1(D_2)$ to D_2										
	$R_1(I$	\mathcal{D}_{2}		E	P	(2	PQ		
	1(2)		P^2	P^3	P^2	$P^{2}Q$			
-	D_2	2		E	R_{z}	F	R_x			
rotation π of $J = 1/2$										
(up	to a pha	ase fact	or)	I	$i\sigma_z$	ic	σ_x	$i\sigma_y$		

L. L. Boyle and Kerie F. Green, Mathematical and Physical Sciences, A 288, 237 (1978)

Combined symmetry: D_{2h}=D₂+T

	R_z	R_x	Т		ω, β, γ	dim.	active operators ^a	spin models $(S = 1)$
E_0	1	1	K		1, 1, A	1		chain(trivial phase)
E'_0	Ι	Ι	$\sigma_y K$		1,-1,A	2	$(S_{xyz}, S_{xyz}, S_{xyz})^{D}$	ladder
E_1	Ι	$i\sigma_z$	$\sigma_y K$	••••	$1,-1,B_1$	2	$\left(S_{z},S_{z},S_{xyz} ight)$	ladder
E'_1	Ι	$i\sigma_z$	$\sigma_x K$		$1, 1, B_1$	2	$\left(S_{xy},S_{xy},S_{xyz} ight)$	ladder
E_3	σ_z	Ι	$i\sigma_y K$	•••	$1,-1,B_3$	2	(S_x, S_x, S_{xyz})	ladder
E'_3	σ_z	Ι	$i\sigma_x K$		$1, 1, B_3$	2	$\left(S_{yz},S_{yz},S_{xyz} ight)$	ladder
E_5	$i\sigma_z$	σ_x	IK		-1, 1,A	2	(S_{yz}, S_y, S_{xy})	$\operatorname{chain}(T_y \text{ phase})$
E'_5	$I \otimes i \sigma_z$	$I\otimes\sigma_x$	$\sigma_y \otimes IK$	••••	-1,-1,A	4	$(S_{xyz}^3, S_x^3, S_{yz}^1, S_{xz}^3, S_y^1, S_z^3, S_{xy}^1)^{c}$	ladder
E_7	σ_z	$i\sigma_z$	$i\sigma_x K$		$1, 1, B_2$	2	$\left(S_{xz},S_{xz},S_{xyz} ight)$	ladder
E'_7	σ_{z}	$i\sigma_z$	$i\sigma_y K$	••••	$1,-1,B_2$	2	$\left(S_y,S_y,S_{xyz} ight)$	ladder
E_9	$i\sigma_z$	σ_x	$i\sigma_x K$		$-1, 1, B_3$	2	(S_{yz}, S_{xz}, S_z)	$\operatorname{chain}(T_z \text{ phase})$
E'_9	$I \otimes i \sigma_z$	$I\otimes\sigma_x$	$\sigma_y \otimes i \sigma_x K$	••••	$-1, -1, B_3$	4	$(S_{xyz}^3, S_x^3, S_{yz}^1, S_y^3, S_{xz}^1, S_{xy}^3, S_z^1)^{\mathbf{d}}$	ladder
E_{11}	$i\sigma_z$	$i\sigma_x$	$\sigma_z K$		$-1, 1, B_1$	2	(S_x, S_{xz}, S_{xy})	$\operatorname{chain}(T_x \text{ phase})$
E'_{11}	$I \otimes i \sigma_z$	$I \otimes i \sigma_x$	$\sigma_y \otimes \sigma_z K$	••••	$-1, -1, B_1$	4	$(S_{xyz}^3, S_{yz}^3, S_x^1, S_y^3, S_{xz}^1, S_z^3, S_{xy}^1)^{\rm e}$	ladder
$ E_{13} $	$i\sigma_z$	$i\sigma_x$	$i\sigma_y K$		$-1, -1, B_2$	2	(S_x, S_y, S_z)	$chain(T_0 phase)$
E'_{13}	$I \otimes i\sigma_z$	$I \otimes i\sigma_x$	$\sigma_y \otimes i\sigma_y K$		$-1, 1, B_2$	4	$(S_{xyz}^3, S_{yz}^3, S_x^1, S_{xz}^3, S_y^1, S_{xy}^3, S_z^1)^{I}$	ladder

16 Projective representations: description of free-edge states.

arXiv:1101.5680; arXiv:1105.6021

Construct MPS with known edge states

♦ S=1 AKLT model (Haldane phase)

 $A^m = B^T (C^m)^*$ B and C^m are CG coefficients

Parent Hamiltonian (sum of projectors)

$$H = \sum_{i} P_2(S_i + S_{i+1}) \propto \sum_{i} [S_i \cdot S_{i+1} + \frac{1}{3}(S_i \cdot S_{i+1})^2]$$

Simpler model in the same phase

$$H = \sum_{i} S_{i} \cdot S_{i+1}$$

S=1 spin chains with D_2+T symmetry

SPT phases and their Hamiltonians

> Trivial phase (ground state $\Psi = |\alpha, \alpha, ..., \alpha > , \alpha = x, y, z)$ $H = \sum_{i} [S_i \cdot S_{i+1} + U(S_i^{\alpha})^2]$

> T_0 phase (the usual Haldane phase)

 $H_{0} = \sum_{i} J_{x} S_{i}^{x} S_{i+1}^{x} + J_{y} S_{i}^{y} S_{i+1}^{y} + J_{z} S_{i}^{z} S_{i+1}^{z}$ $T_{x} \text{ phase} \qquad H_{x} = \sum_{i} J_{x} S_{i}^{x} S_{i+1}^{x} + J_{y} S_{i}^{xz} S_{i+1}^{xz} + J_{z} S_{i}^{xy} S_{i+1}^{xy}$ $T_{y} \text{ phase} \qquad H_{y} = \sum_{i} J_{x} S_{i}^{yz} S_{i+1}^{yz} + J_{y} S_{i}^{y} S_{i+1}^{y} + J_{z} S_{i}^{xy} S_{i+1}^{xy}$ $H_{z} = \sum_{i} J_{x} S_{i}^{yz} S_{i+1}^{yz} + J_{y} S_{i}^{xz} S_{i+1}^{xz} + J_{z} S_{i}^{z} S_{i+1}^{z}$

Phase transitions between different phases

Model Hamiltonian

$$H = \sum_{i} \left[\cos \theta S_{x,i} S_{x,i+1} + \sin \theta \left[\cos \phi (S_{y,i} S_{y,i+1} + S_{z,i} S_{z,i+1}) + \sin \phi (S_{xz,i} S_{xz,i+1} + S_{xy,i} S_{xy,i+1}) \right] \right]$$

1st order transition between different nontrivial SPT phases

Realization of other phases in spin ladders

Direct product of two spin chains

$$M_1 \otimes M_2 = M_3 \oplus M_3$$

Examples:

 $E_{9} \otimes E_{13} = E_{1} \oplus E_{1}$ $E_{9} \otimes E_{11} = E_{7} \oplus E_{7}$

All the 16 phases are realized.

. . .

	R_{z}	R_x	T	
E_0	1	1	K	
E'_0	Ι	Ι	$\sigma_y K$	
E_1	Ι	$i\sigma_z$	$\sigma_y K$	
E'_1	Ι	$i\sigma_z$	$\sigma_x K$	
E_3	σ_z	Ι	$i\sigma_y K$	
E'_3	σ_z	I	$i\sigma_x K$	
E_5	$i\sigma_z$	σ_x	IK	
E'_5	$I \otimes i \sigma_z$	$I\otimes\sigma_x$	$\sigma_y \otimes IK$	
E_7	σ_z	$i\sigma_z$	$i\sigma_x K$	
E'_7	σ_z	$i\sigma_z$	$i\sigma_y K$	
E_9	$i\sigma_z$	σ_x	$i\sigma_x K$	
E'_9	$I \otimes i \sigma_z$	$I\otimes\sigma_x$	$\sigma_y \otimes i\sigma_x K$	
E_{11}	$i\sigma_z$	$i\sigma_x$	$\sigma_z K$	
E'_{11}	$I\otimes i\sigma_z$	$I \otimes i \sigma_x$	$\sigma_y \otimes \sigma_z K$	
E_{13}	$i\sigma_z$	$i\sigma_x$	$i\sigma_y K$	
E'_{13}	$I \otimes i\sigma_z$	$I \otimes i \sigma_x$	$\sigma_{y} \otimes i\sigma_{y}K$	

Distinguish different phases from Edge states

Small perturbations: magnetic field

$$H' = \sum \left(g_x B^x S_i^x + g_y B^y S_i^y + g_z B^z S_i^z \right)$$

- Bulk: gapped singlet, no response
- Edge: degenerate (like impurity spins)
 - Linear response (first order perturbation theory)
 - > Will the degeneracy be split by H'?

 T_0 phase: Yes! B_x , B_y , B_z will polarize the end spins and split the ground state degeneracy.

 T_x, T_y, T_z phases?

T_x phase

♦ T_x phase: Will the magnetic field split the edge degeneracy?

- > depends on direction of B
- » Numerical result (exact diagonalization):

 $< \sum S_i^{x} > \rightarrow 0, 0, \pm 1,$ $< \sum S_i^{y} > \rightarrow 0, 0, 0, 0, 0,$ $< \sum S_i^{z} > \rightarrow 0, 0, 0, 0.$

T_y, T_z phases

• T_y phase

 $<\sum S_i^{x} > \rightarrow 0,0,0,0,$ $<\sum S_i^{y} > \rightarrow 0,0,\pm 1,$ $<\sum S_i^{z} > \rightarrow 0,0,0,0.$

• T_z phase

 $< \sum S_i^{x} > \rightarrow 0,0,0,0,$ $< \sum S_i^{y} > \rightarrow 0,0,0,0,$ $< \sum S_i^{z} > \rightarrow 0,0,\pm 1.$

Symmetry reason

Effective operators and physical perturbations

- For 2 by 2 MPS (2-fold edge states), only three Pauli operators that split the degeneracy of the ground states
- > The Pauli operators form linear reps of the SG
- > The physical operators also form linear reps of the SG

 $M(g)^{-1}\sigma^{\alpha}M(g) = \eta_{g}(\sigma^{\alpha})\sigma^{\alpha}$ $u(g)^{-1}Ou(g) = \eta_{g}(O)O$

η(σ^α) = η(O) → σ^x ~ O, they have the same matrix elements on the ground state subspace (up to a constant factor)
 For example, in T_x phase: σ^x ~ S^x, σ^y ~ S^{xz}, σ^z ~ S^{xy}

Experimental measurements (I)

Lattice structure of spin chain (LiVSi₂O₆)

****/3+

S=1

VO₆

edge states: magnetic impurities

 Curie's law: divergence of magnetic susceptibility at low temperatures

$$\chi_m(T) = \frac{Ng_m^2 \mu_B^2}{3k_B T}, \quad m = x, y, z$$

Experimental measurements (II)

No edge states in the trivial phase

 $g_{x}, g_{y}, g_{z} \approx 0$

- Nontrivial phases:
 - > In T₀ phase: g_x , g_y , g_z are finite > In T_x phase: g_x is finite, g_y , $g_z \approx 0$ > In T_y phase: g_y is finite, g_x , $g_z \approx 0$ > In T_z phase: g_z is finite, g_x , $g_y \approx 0$

Other perturbations

Perturbations by S^α are not sufficient to distinguish all the SPT phases. We need perturbations associated to the quadrupole operators S^{αβ},

$$H' = \sum_{i} g_{xy} \left(\nabla_{y} B_{x} + \nabla_{x} B_{y} \right)_{i} S_{i}^{xy} + \dots$$

• From the different responses of the edge states to perturbations of B_x , B_y , B_z , and $\frac{\partial B^x}{\partial y}$, ... all the phases can be distinguished.

Recent progress

- Generalization to higher dimensions
 - > 1D: $H^2(G, U(1))$
 - ▷ 2D: H³(G, U(1))
 - > 3D: $H^4(G, U(1))$

Reference:

2D toy model realizing nontrivial $H^3(Z_2, U(1))$ arXiv:1106.4752

Classifying dD SPT phase through topological nonlinear sigma model

arXiv:1106.4772

Conclusion

- There are 16 different SPT phases in 1D protected by D₂+T symmetry
- They can be realized with S=1 spin chains and spin ladders
- All the SPT phases are completely characterized by their edge spins (projective representations) and are experimentally distinguishable.

	R_{z}	R_x	T		ω, β, γ	dim.	active operators ^a	spin models $(S = 1)$
E_0	1	1	K		1, 1, A	1		chain(trivial phase)
E'_0	Ι	I	$\sigma_y K$		1,-1,A	2	$(S_{xyz}, S_{xyz}, S_{xyz})^{\mathbf{b}}$	ladder
E_1	Ι	$i\sigma_z$	$\sigma_y K$		$1,-1,B_1$	2	(S_z, S_z, S_{xyz})	ladder
E'_1	Ι	$i\sigma_z$	$\sigma_x K$		$1, 1, B_1$	2	$\left(S_{xy},S_{xy},S_{xyz} ight)$	ladder
E_3	σ_z	Ι	$i\sigma_y K$	••••	$1,-1,B_3$	2	(S_x, S_x, S_{xyz})	ladder
E'_3	σ_z	I	$i\sigma_x K$		$1, 1, B_3$	2	$(S_{yz}, S_{yz}, S_{xyz})$	ladder
E_5	$i\sigma_z$	σ_x	IK		-1, 1, A	2	(S_{yz}, S_y, S_{xy})	$\operatorname{chain}(T_y \text{ phase})$
E'_5	$I\otimes i\sigma_z$	$I\otimes\sigma_x$	$\sigma_y \otimes IK$		-1,-1,A	4	$(S^3_{xyz}, S^3_x, S^1_{yz}, S^3_{xz}, S^1_y, S^3_z, S^1_{xy})^{c}$	ladder
E_7	σ_z	$i\sigma_z$	$i\sigma_x K$		$1, 1, B_2$	2	$\left(S_{xz},S_{xz},S_{xyz} ight)$	ladder
E'_7	σ_z	$i\sigma_z$	$i\sigma_y K$		$1,-1,B_2$	2	$\left(S_{y},S_{y},S_{xyz} ight)$	ladder
E_9	$i\sigma_z$	σ_x	$i\sigma_x K$		$-1, 1, B_3$	2	$\left(S_{yz},S_{xz},S_{z} ight)$	$\operatorname{chain}(T_z \text{ phase})$
E'_9	$I\otimes i\sigma_z$	$I\otimes\sigma_x$	$\sigma_y \otimes i\sigma_x K$		$-1, -1, B_3$	4	$(S^3_{xyz}, S^3_x, S^1_{yz}, S^3_y, S^1_{xz}, S^3_{xy}, S^1_z)^{d}$	ladder
E_{11}	$i\sigma_z$	$i\sigma_x$	$\sigma_z K$		$-1, 1, B_1$	2	(S_x, S_{xz}, S_{xy})	$\operatorname{chain}(T_x \text{ phase})$
E'_{11}	$I\otimes i\sigma_z$	$I\otimes i\sigma_x$	$\sigma_y \otimes \sigma_z K$		$-1, -1, B_1$	4	$(S^3_{xyz}, S^3_{yz}, S^1_x, S^3_y, S^1_{xz}, S^3_z, S^1_{xy})^{e}$	ladder
E_{13}	$i\sigma_z$	$i\sigma_x$	$i\sigma_y K$		$-1, -1, B_2$	2	$\left(S_x,S_y,S_z ight)$	$\operatorname{chain}(T_0 \text{ phase})$
E'_{13}	$I\otimes i\sigma_z$	$I \otimes i\sigma_x$	$\sigma_y \otimes i\sigma_y K$		$-1, 1, B_2$	4	$(S^3_{xyz}, S^3_{yz}, S^1_x, S^3_{xz}, S^1_y, S^3_{xy}, S^1_z)^{\mathbf{f}}$	ladder

Thanks for attention!