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Abstract
This paper presents analysis, fabrication and characterization of patterned magnetorheological
(MR) elastomers. By taking into account the local magnetic field in MREs and particle
interaction magnetic energy, the magnetic-field-dependent mechanical properties of MREs with
lattice and BCC structures were theoretically analyzed and numerically simulated. Soft
magnetic particles were assembled in a polydimethylsiloxane (PDMS) matrix to fabricate new
MR elastomers with uniform lattice and BCC structures, which were observed by a microscope.
The field-dependent moduli of the new MR elastomers were characterized by using a
parallel-plate MR rheometer. The experimental results agreed well with numerical simulations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Magnetorheological (MR) materials, including MR fluids, MR
foams and MR elastomers, are an important branch of smart
materials [1]. For the past two decades, MR fluids have
received considerable attention and a variety of applications
have been reported [2–5]. MR elastomers (MREs) are
composites where highly elastic polymer matrices are filled
with magnetic particles. MREs and MR fluids have similar
field response properties; however, there are some distinct
differences in operating these two classes of materials. The
most noteworthy is that MREs operate within the pre-yield
regime while MR fluids typically operate in a post-yield
continuous shear or flow regime. In other words, the ‘strength’
of MR fluids is characterized by the yield stress while MREs
are characterized by the field-dependent modulus. In view
of these applications, MRE devices are used to adjust the
natural frequency of a structure, which is dominated by the
equivalent stiffness, while MR fluid devices provide a damping
function, which is the process of dissipating energy. Therefore,
these two materials are complementary rather than competitive.
Recently, MREs have found a lot of applications, such as
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vibration absorbers, engine mounts and variable impedance
surfaces [6, 7].

In the literature, both anisotropic [8, 9] and isotropic
[10, 11] MREs were fabricated and their mechanical properties
have been investigated analytically and experimentally. In
analyzing the field-dependent modulus of MREs, a number
of models were proposed based on the analysis of the
dipole model for particle energy interaction. Jolly et al
[12] presented a point-dipole model, where the MR effect
was studied as a function of particle magnetization. This
model was borrowed from the previous studies on MR fluids.
Davis [13] calculated the shear increment by using finite
element analysis, which was for isolated single chains of
periodically spaced dipoles. Shen et al [14] fabricated
MREs with polyurethane and a natural rubber matrix and
presented a mathematical model to represent the stress–strain
relationship of MRE. This model takes into account all the
dipole interactions in a chain. Zhang et al [15] proposed a
model by considering the local field. It is noted that these
modeling studies are based on the assumption that MREs only
have a simple chain structure, where all particles are located
within chains. There are very few reports discussing the
influence of other chains and in predicting the field-dependent
properties with other complex structures. This may be due
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to the fact that it is difficult to find an effective fabrication
technique in developing MREs with precisely controlled
structures. Also, the modeling approach to the field-dependent
properties of MREs with complex structures is very rare. This
is the motivation of this research.

This paper consists of two major parts. The first part is to
theoretically analyze the field-dependent properties of MREs
with a pre-designed structure, where both the local magnetic
field in MREs and particle interaction magnetic energy will
be used to numerically derive the magnetic-field-dependent
mechanical properties. The second part is to fabricate MREs
with pre-designed structures by using microtechnology and to
characterize their field-dependent mechanical properties.

2. The simulation analysis of patterned MRE

In this paper, a lattice structure based MRE is first proposed to
introduce the simulation approach. As shown in figure 1, the
proposed lattice structure MREs consist of m layers, in which
the distances of the particles in each layer in three directions are
dx , dy and dz, respectively. Two steps are used to calculate the
magnetic energy and field-dependent modulus of the MREs.
The first is to calculate the local magnetic field, which is
induced by the external magnetic field as well as the dipole
fields from all the magnetized particles. The magnetic dipole
of particles can be determined by the local field. The second is
to represent the interaction energy of a particle with all other
particles in the structure. The magnetic-field-induced shear
stress can be derived by taking the derivative of interparticle
energy density with respect to the scalar shear strain. The
field-dependent modulus can be obtained as a consequence.
The lattice structure is only used to introduce the calculation
method. For the BCC structure, the difference is only in
coordinate locations of the particles. The calculation method is
the same as that used in the lattice structure. Also, the simple
cubic structure is a special case of lattice structure, which has
the same side length value in the x , y and z axes.

2.1. Local magnetic field and magnetic dipole

When a magnetic field H0 is applied to the suspension, the
magnetic dipole moment induced on a particle is

mi = 3
μp − μm

μp + 2μm
Vp Hloc (1)

where μ0 is the vacuum permeability, μp is the relative
permeability of particles, μm is the relative permeability of
the medium and Vp is the volume of the particle. The local
magnetic field is given by

Hloc = H0 + Hp (2)

where H0 is the initial magnetic field and Hp is the magnetic
field caused by the dipole moment of all particles.

As shown in figure 1, suppose that the magnetic field
is applied in the direction of the Z axis. Also, all the
magnetizable particles have been magnetized as dipoles. A
magnetic vector potential A at the zero point induced by

Figure 1. Schematic of MREs with a lattice structure and the
magnetic field induced by a dipole.

the magnetic dipole moment m at position P(x, y, z) can be
expressed as

Ax = A sin θ = μ0

4π
· y

(x2 + y2 + z2)3/2
|m|

Ay = −A cos θ = μ0

4π
· −x

(x2 + y2 + z2)3/2
|m|

Az = 0

(3)

where sin θ = y/
√

x2 + y2, cos θ = x/
√

x2 + y2.
For B = ∇ × A

Bx = μ0

4π
· −3xy

(x2 + y2 + z2)5/2
|m|

By = μ0

4π
· −3yz

(x2 + y2 + z2)5/2
|m|

Bz = μ0

4π
· x2 + y2 + 2z2

(x2 + y2 + z2)5/2
|m|

B = Bxi + By j + Bzk and Hp =
∞∑

i=1

Bi

μ0
= Dm,

(4)
where Bi is the magnetic flux density induced by the dipole
i . D is the influence factor, which can be calculated with the
simulation.

The magnetic dipole moment induced on a particle is

mi = 3βVp

1 − 3DβVp
H0 (5)

where β = (μp − μm)/(μp + 2μm).

2.2. Interaction energy of particles and field-dependent
moduli

The interaction energy of two dipoles m1 and m2 can be
expressed as

E12 = μ0μm

4π

(
m1 · m2

r 3
− 3

r 5
(m1 · r)(m2 · r)

)
. (6)
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Figure 2. The fabrication process of patterned MREs and the sample structures. (a) Patterned mold; (b) fabrication steps; (c) picture of the
lattice structure; (d) picture of the BCC structure.

Assuming one dipole is located at the zero point and the
other dipole is located at the position (x, y, z), the interaction
energy of the two dipoles with equal strength m and direction
is

E12 = μ0μm|m|2
4π

(
1 − 3 cos2 ϕ

|r |3
)

=
|m|2

(
1 − 3 z2

x2+y2+z2

)

4πμ0μm(x2 + y2 + z2)3/2
. (7)

For the particle at the coordinate origin, its interaction
energy with all the particles is

E =
∞∑

i=1

μ0μm|m|2
(

1 − 3 z2
i

x2
i +y2

i +z2
i

)

4π(x2
i + y2

i + z2
i )

3/2
. (8)

When the particles are moved in the X–Y plane (the
magnetic field direction is along the Z axis), the interaction
energy can be written as

E =
∞∑

i=1

μ0μm|m|2[(xi + �xi)
2 + (yi + �yi)

2 − 2z2
i ]

4π[(xi + �xi)2 + (yi + �yi)2 + z2
i ]5/2

. (9)

In this paper, only the simple shear in the x direction
has been deduced, because the deduction of a 3D shear is too
complex in this case. However, for an isotropic structure, the
x and y axis shears have the same behaviors. The shear force
in any other direction is the combination of the single-direction
shears in the x and y axis. By defining the scalar shear strain

of the particle chain as ε = �x
z , i.e. the shear direction is in the

x axis, the modulus induced by the application of a magnetic
field can be computed by taking the derivative of interparticle
energy density with respect to the scalar shear strain divided by
the shear strain:

�G =
∞∑

i=1

{
3μ0μm|m|2z(xi + εzi )(4z2 − x2

i − 2xiεzi

− ε2z2
i − y2

i )
}{

4πε
(
x2

i + 2xiεzi + ε2z2
i

+ y2
i + z2

)7/2
Vunit

}−1
(10)

where Vunit is the unit volume of the structure with one particle.
For example, the lattice structure has Vunit = dx dy dz, as
shown in figure 1.

3. The fabrication of patterned MREs

The matrix for the MRE can be any kind of elastomer, which
is used to support the particles but does not react with the
MR particles. In this work, polydimethylsiloxane (PDMS)
2025 (Dow Corning 184) material is used as a matrix. This
PDMS material is a room-temperature vulcanizing elastomer
with a transparent appearance. Pure iron balls, provided by
Shenzhen Universal Ball Manufacturing Co. China, were used
as dispersed particles.

A schematic diagram of the fabrication process of
patterned MREs is shown in figure 2. A patterned mold was
prepared at first (figure 2(a)), which is a methyl-methacrylate
board with regular holes etched by laser. The pure iron balls
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Figure 3. The strain–stress curve of lattice structural MRE at
different magnetic fields: simulation and experimental results.

were filled into the holes of the mold at first. Then a thin layer
of PDMS is located on the front surface of the mold, so as to
fix the position of the particles. After curing of the PDMS,
the thin layer embedded with patterned magnetic iron particles
was taken off from the mold. Then we overlap several layers
according to the designed position and thickness, and fill the
gap with PDMS and remove the air bubbles in a vacuum case.
Finally we cure the patterned MRE in a constant temperature
oven (figure 2(b)). By using different molds and overlapping
positions, different structures of MREs can be obtained, such
as lattice chain or body centered tetragonal (BCT). BCT is
probably the most stable structure in MR materials. However,
in this paper, the body centered cubic (BCC) was selected for
study due to its ease of fabrication and simplicity. Different
from the BCT structure, which has a field-increasing modulus,
the BCC structure has a field-decreasing modulus. This new
finding will be discussed in the following calculations and
experiments.

Two categories of structures have been fabricated in this
work. The first one was the sample with the lattice structure
and the second one was the sample with BCC structure, as
shown in figures 2(c) and (d), respectively. The photos were
taken by a Leica DFC280 microscope. As can be seen from
figures 2(c) and (d), the particles are dispersed regularly on the
layer. The diameter of the iron ball in sample 1 is 400 μm,
the distance between particles in the plane is 800 μm and the
distance between particles in the thickness direction is 480 μm.
Three layers are prepared in the thickness direction. The
parameters in sample 2 are 800 μm, 1000 μm and 1000 μm,
respectively.

4. Results and discussions

The MR effect of patterned MRE was evaluated by measuring
the shear modulus with and without an applied magnetic field
using a Physica MRD 180 MagnetoRheological Device (Anton
Paar Companies, Germany), equipped with an electromagnet
kit. The rubber segments were sandwiched between a rotary
disk and a base.

Figure 4. The relationship between the field-reduced modulus and
particle volume fraction in a BCC MR elastomer.

The quasi-static shear mode was employed to evaluate
the shear modulus of MRE. Figure 3 shows the strain–stress
curves of the lattice structural MRE sample at five different
magnetic field intensities of 0, 100, 200, 300 and 400 kA m−1,
respectively. As can be seen from these figures, the modulus
of MREs shows an increasing trend with magnetic field, the
properties of which are similar to conventional MREs. The
shear stress in the figures is seen as the combination of elastic
stress and field-induced stress of the MRE. The simulation
result is obtained by the program and the parameters of the
sample. Obviously, the model prediction agreed well with
experimental results.

In [7], for a chain-like structure-based MRE, the optimum
volume fraction of iron particles was predicted to be 27% and
the relative change in modulus due to a large magnetic field was
approximately 50%. However, our sample has a relatively low
modulus increment of 18% in a magnetic field of 400 kA m−1,
as shown in figure 3. This is mainly due to the fact that the
sample has a very low particle volume fraction of 11%. To
improve the field-induced modulus, the volume fraction of the
particle must be increased.

Using the same theoretical analysis as shown in section 2,
the field-dependent modulus change of the BCC-based MRE
was calculated by using equation (10). In contrast to the lattice
structure MRE, the BCC-based MRE shows a decreasing trend
with magnetic field, as shown in figure 4. For example, the
modulus change at 300 kA m−1 is about two orders higher
than that at 100 kA m−1. This phenomenon has never been
reported in the literature. This finding is very interesting as it
may provide a concept to develop ‘negative’ MREs, which is
expected to broaden potential applications of MREs in special
conditions. Also, this figure shows that the field-dependent
modulus change increases steadily with the increment of
particle volume fraction, To verify the simulation analysis,
steady shear experiments were conducted and the results were
shown in figure 5. It can be seen from this figure that the
modulus shows a slightly decreasing trend with magnetic field.
It should be noted that the modulus change is not very notable,
the reason for which are due to two reasons: one is the particle
volume fraction is very low, and the other is the matrix modulus
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Figure 5. The relationship between the shear stress and strain in a
BCC MR elastomer.

is quite high. It is noted that the fabricated BCC MREs have
limited applications because of very narrow modulus changes.
However, these results might provide concepts to develop
other new MREs with controllable mechanical properties by
designing special patterned structures. In this paper, the shear
modulus is derived from the simple shear in one direction
and the experimental result is a torsional shear. Although
the torsional shear is the combination of the single-direction
shears in the x and y axis, and the x and y axis shears
have the same behaviors for isotropic structure, there are
still some differences. For the lattice structure, the field-
dependent modulus is dominated by the particles in one chain
and the influence of neighboring chains is relatively low. Thus
the difference between torsional shear and single-direction
shear can be neglected, and the experimental results are very
similar to the simulation results. But for the BCC structure,
the influence of neighboring chains is relatively high. This
could result in the difference between the experimental and
simulation results. In future, a unidirectional shear instrument
is needed to be developed to verify the experiments again.

5. Conclusions

In this paper, two new MR elastomers, with a lattice structure
and a BCC structure, were fabricated by precisely positioning
iron particles in a PDMS matrix. Both the MRE samples
consist of three layers.

The field-dependent mechanical properties of the pat-
terned MRE were investigated both numerically and exper-
imentally. In numerical analysis, a quasi-static model that
examines the effects of magnetic field was presented. This
model takes into account the dipole interactions caused by
all the dipoles considered, including the local field induced

by all the particles and the interaction energy of all the par-
ticles. In the experimental approach, the field-dependent mod-
ulus was measured under steady shear by using a parallel-plate
MR rheometer. For the MRE sample with lattice structure, the
relative modulus increment is about 18% at a magnetic field
of 400 kA m−1. The comparison between experimental results
and model predictions indicate that the model could precisely
predict material performances. For the MRE sample with a
BCC structure, the field-induced modulus shows a decreasing
trend with magnetic field, which has never been reported. This
study is expected to design and develop novel field-controlled
MREs with pre-designed structures.
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