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Frequency Dependent Electrorheological Properties: Origin and Bounds
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We present a unified framework for the first-principles calculation of the frequency dependent shear
modulus, static yield stress, and structures of dielectric electrorheological systems. It is shown that a
strong (applied field) frequency dependence of the static yield stress, in good quantitative agreement
with those measured experimentally, can arise from Debye relaxational effects that are typical of poor
insulators. Physical upper bounds on the yield stress and the shear modulus, as well as frequency-
induced structural soft modes, are predicted. [S0031-9007(96)01165-9]

PACS numbers: 61.90.+d, 41.20.Cv, 62.20.—x

Electrorheological (ER) fluids are a class of materialsenergy dominates over the temperature effects. Results
whose rheological characteristics are controllable througbf our calculations show that the DER model not only ac-
the application of an electric field. In this work, we counts quantitatively for the measured nonlinear (effective)
consider a particular type of ER fluids, the dielectric elec-electrical response of ER fluids as well as the measured fre-
trorheological (DER) systems, defined as colloidal dis-quency dependence of the yield stress, but also predicts an
persions of dielectric particles in which the electricalinteresting frequency-induced structural soft mode that has
response of both the solid and the liquid components iget to be observed. By considering the mathematical ori-
governed by linear electrostatics. Besides being a topigin of the frequency dependencies, upper bounds for the
of general theoretical interest in itself, the DER modelyield stress and shear modulus are obtained.
has been widely invoked to explain the various aspects Consider a two-component DER model system consist-
of the ER phenomenon, such as the mechanism of chaing of spherical solid particles of radiug and complex
formation [1], the solid structure under an electric fielddielectric constants; dispersed in a fluid characterized
[2], and the widely observed quadratic field dependencéy ¢,. We assume the dielectric constants to have the
of the yield stress [3]. In spite of these successes, howform characteristic of Debye relaxation, i.e.,— &. =
ever, serious gaps still exist. Among them are the lack otA /(1 — iw7), which is commonly observed in poor in-
guantitative understanding for the observed (applied elecsulators at low frequencies. Hese is the high frequency
tric field) frequency and conductivity dependencies of thedielectric constantsy, = e(w = 0), 7 denotes the relaxa-
yield stress, and the question concerning the upper boundi®n time, andw is the angular frequency. The electro-
of ER shear modulus and yield stress. In the absence atatic problem to be solved is given by
a first-principles account for those issues, the gaps in our 1 .
understanding are the source of much speculation about v [1 - n(r)}V¢ =0, (1)
the basic mechanism of the ER effect and its potential . .
limitation(s). wheres = e/(es — g1)is the on_Iy relevant n_1ater|al pa-

In this Letter, we present a general framework for first-rameter math.e problem. Her_$ 1S the e_IectrlcaI poten-
principles DER model calculations that is based on thdi2! @nd n(7) is the characteristic function for the solid
formulation of the problem as one of effective dielectric component, defined as having the value 1 at those spa-

constant optimization. That is, since the operating fre—t""_II points occupied by the solid particles, and zero other-

quencies of ER fluids are generalyl0* Hz and the typi- wise. The formal _solutlon to Eq. (1), given the cond|t|9n
cal particle size and interparticle separationai® 2 cm, ©f A¢/¢ = E = 1 in thez direction, can be expressed in
most ER systems are in the “long-wavelength limit,” or (€ OP€rator notation as

the electrostatic limit, by a comfortable margin [4]. Pro- b= — Z _ = @)
vided the components of the system are governed by lin- 1—-T/s s—TI°

ear response, the DER model applies, and the electrostatjghere

free energy density is given byz,.E?/8x, whereg,, is 1

the component of the effective dielectric tensor along the r=— f di'n(F\V'Go(F — 7)) - V' (3)
field (z) direction [5], andE = A¢ /¢ is the applied elec- 4

tric field, whereA ¢ is the voltage difference andis the is an integral-differential operator, witldo(7 — 7/) =
length of the sample. The condition of minimum free en-1/47|7 — 7/| denoting the Green's function for the
ergy thus directly translates into the maximizationsof ~ Laplace equation, and the sample volume. By defining
as a function of particle configurations, plus the considthe inner product operation as

eration of configurational entropy for temperature effects. ) e 1

Below we focus only on the case where the electrostatic (Ply) = [ drin(F)V'¢" - Vi, (4)
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it becomes possible to write the effective dielectric con-BCT is the favored structure is in agreement with prior
stant as calculations based on dipole interactions [2] as well as
Fp 1 [ *< 1 > d¢
& \% d K K 0z

more rigorous approaches [8,9]. A direct implication of
our theory, thak,, is maximized under a strong electric
=1+ o) ©)
s Py indeed been widely observed in various ER fluids [10].
From Egs. (2) and (5), it follows that the effective dielec- A separate calculation has been carried out for cylin-

field, is the nonlinear electrical response of the overall DER
system. This nonlinearity in the electrical response has
tric constant is given by the Bergman-Milton representadrical columns of particles arranged in the BCT structure,

tion [6]: with the columns arranged in a two-dimensional triangu-
- , lar superlattice. For column diameters ranging from
. 1 8 ; e
. _ 1 — v Z M =1- Z % to 30R, it is found that the columnar states are always
2 w57 Sn w87 Sn higher in energy than the pure BCT structure, phase sepa-
_ .1 1 rated from the fluid. However, the electrostatic energy
-1 1% Z<Z|(’//”><l’/j” s —T ’ "ll’”><"ll’"|z>’ differences are at most 0.1% of the total electrostatic en-

n,m

6) ergy. We note that in most experimental situations par-
ticles form columns, and the average column cross section

wheres, and¢, are thenth eigenvalue and eigenfunction is usually not big (on the order of five particles across).
of the operatod”, and{,} is an arbitrary complete basis The small energy difference between the column state and
set. Since the matrix inversion operation in Eq. (6) isthe pure BCT state means the overall yield stress and the
noted to be required only for a particular diagonal matrixshear modulus (of the DER model in its ordered state, i.e.,
element, the answer may be obtained efficiently by usinghe £ > E. needed for the liquid-solid transition) may be
the recursive Green'’s function method [7]. calculated by using the BCT ground state.

The remarkable feature about the representation, In order to calculate the shear modulus and the yield
Eq. (6), is that the geometric information is separatedstress, it is necessary to perturb the system away from
from the material information, in contrast to approachests lowest electrostatic free energy state. For the BCT
that involve the direct numerical solution of the Laplacestructure, shearing in a direction perpendicular tazthgis
equation. This separation means that the microstucturaheans not only a tilt of the axis away from the electric-
information are given by the spectral function, i.e., by itsfield direction by an anglé, but also a distortion [11] in the
value [(z|¢,)|>/V = f% and the location of the poles,, lattice constants anda given byc/R = 2/cosf, a/R =
both of which are known to be real. Furthermaremust [8 — (c2/2R?)]'/2, shown schematically in the inset of
lie in the interval[0, 1] [6]. Once the spectral function Fig. 1. Asaresult, under shear the volume fraction of solid
is obtained, it becomes simple to calculate the effectivespheres in the BCT structure is aBaependent, given by
properties and their associated frequency dependencigsy(f) = 47 cos 0/3(8cos # — 2). For# small,z..(6)
as these factors appear only in If either ; or g; is
complex and frequency dependent, then the resuliing
and consequenthg,, will be complex and frequency
dependent. Whereas the imaginary partggf charac-
terizes the overall electrical dissipation of the system, -
the frequency dependence of the real paregfis what S
gives rise to the frequency dependence of the yield stress 1.0
and the shear modulus described below. It should be
emphasized that the present formulation is rigorousiand
cludes all the multipole interactions and (self-consistent)
local field effects.

Provided the electrostatic ground state has a unique
local spatial structure, the target configurations for the
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maximumz,, can be limited to periodic structures. We
have performed numerical calculations ®f, to five-
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decimal accuracy for six periodic structures—the body-

centered tetragonal (BCT), the face-centered cubic, thEIG. 1. Calculated stress, in units of Pascal, plotted as a

hexagonal, the body-centered cubic, the simple cubic, aniginction of st_rain,_ i.g., the tilt anglé as defi_ned in the insgt.

the diamond. It was found that at any given concentratiod '® dashed line indicates the unstable regime. The maximum
f the particles. bodv-centered tetragonal has the largesSiress IS defined as the static yield stress. The parameters

9 P ! y L 9 . 9€3ked in the calculation are, = 8.4 + 043i, e, =271, E =

&:; and face-centered cubic is a close second, with thg 32 kv/mm, andp = 0.22. The inset shows the geometry of

rest decreasing in the order given above. The fact thahe particles under shear.
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may be expanded about its optimal value as 20 . . .
R{Ezgq==R{§AQ}—-LMW-F—— (7) E=1.32KV/mm
£ &) 2 ’ S5t p=0.22 .
where u is the shear modulus in units ¢f,|E?/87. It ]
may be expressed as z 10 | )
2pe [ ams)} 2
= Rej ————| F\(s) — F.(s) + o
s P P | R e T ] s | _
— wv)
P [SBCT(O) - & }} (8)
3p00L e ’ L T
with p denoting the volume fraction of solid spheres, 10’ 10° 10° 10*
F(s)={(zl(s = T)7'z)/V, F(s)=<(xI(s — T)~'x)/V, Frequency (Hz)

andepcr(0) being thed = 0 effective dielectric constant ¢ Comparison between measured (solid symbols)
of the BCT structure. Because of the vertical nature of th& g calculated (solid lines) frequency-dependent static yield
structure, i.e., in either columnar or phase-separatlon Sta&resses, in units of Pascal, for 22% by volume of Ar&-glass
(column diameter approaching), €gct(0) is accurately spheres dispersed in silicone oilA denotes the system after

related to the overall effective dielectric constant by thdt has been baked at elevated temperatures to remove trace
relation water. B denotes the same system before water removal. The

measurement is done at the rms electric field of 1.32 kV/mm.
_ P _ Parameters used to obtain the calculated results are given in
811(0) = ——%gcr(0) + |1 —

P()(O) P()[z()) i| 2. (9) the text.

For the calculation of the yield stress, it is necessary to
go beyond the sma#l expansion. Numerical evaluation of frequency value of yield stress was calculated with no
the stress-strain relation, i.e., fRe|'0z..(8)/96} versus  adjustable parameters. The agreement with experiment is
6, is found to display a maximum as shown in Fig. 1. Byseen to be excellent. To explain the slight frequency de-
definition, value of the maximum stress is the static yieldpendence, we have used the value 6t 4.8 X 107 sec
stress (in units ofe,|E?/87), as further strain would make ande, = 2 in the Debye form of(w). CurveB gives
the stress decrease, i.e., the structure becomes unstablethe yield stress for the same ER system prior to water

Once the parameters of the spectral function have beeemoval (i.e., baking at elevated temperatures). It is
calculated, it is simple to evaluate the effective dielectricseen that both the value of yield stress and its frequency
constant, the shear modulus, the yield stress, and theilependence are much larger. The theoretical curve is
frequency dependencies. In a first test of the theorygalculated by using,(w) = 14.8 + 12/(1 — iwT), with
we compare the theoretical prediction in the effectiver = 6 X 10~* sec and the measured = 2.71. A plau-
dielectric constant increase with that measured for @ible explanation for the significant effect of trace water
simple two-component ER system, consisting of 22% byis that under a high electric field the water is attracted
volume of monodispersed 1/&m diameter glass spheres to the interface between oil and glass, coating the glass
[12] dispersed in silicone oil [13]. The ER fluid sample particles and thus modifying its effectivg(w). By using
was baked for 16 h at 14T in order to remove traces the same parameters and the high-field BCT structure,
of water, and measured in a narrow-gap cell at 1 kHzhe calculated conductivity of the system at 10 kHz is
and fields up to 1 kv/mm. The saturation value of the2.5 X 1078 S/m. This compares favorably with the
high field dielectric constant is found to be 5% larger thanmeasured value df X 10~% S/m at the same frequency.
that measured at the low field. By using the measure®ur results thus demonstrate that the observed frequency
dielectric constant of glasss; = 6.5 and silicone oil, dependence of ER fluids’ yield stress can be traced to the
g, = 2.71, we get an increase of 5.08%, in excellentDebye relaxation processes common in poor insulators,
agreement with the experiment. and may be explained quantitatively by the DER model.

In Fig. 2, we compare the measured frequency- The frequency dependence of the shear modulus for
dependent static yield stress of the same ER system (soltle same systems can be directly evaluated from Eqg. (8).
symbols) with those predicted theoretically (solid lines).Here, unfortunately, no experimental data are yet avail-
The static yield stress was measured by using a standaadle. The calculated results (solid lines), using the same
parallel plates torsional device. With a rms electric fieldparameters as those in Fig. 2, show similarity to that of
of 1.32 kV/mm applied across the ER fluid sandwichedthe yield stress. However, whesy is large, a novel
between the two parallel plates, the lower plate was rotateghenomenon is predicted. That is, over some finite fre-
slowly, dragging the top plate, until slipping occurred quency range it is found that the ground state is unstable
between the two plates. The stress at the point of slippingp a slight elongational distortion of the BCT Iattice,
was taken as the static yield stress. In cubyehe high- and the new ground state is one where thexis is
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stress and shear modulus to h88/R/5 and1.9(R/§),
respectively, in units ofe,|E?/87. Taking R = 20u,
6§ =1A E=1kV/mm, ande, = 2.5, we get 8 kPa
and 4 MPa, respectively, for the two bounds. Since these
upper bounds are obtained by setting= 0, they are
independent of whether we use complex or egahnde,.
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