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We present a unified framework for the first-principles calculation of the frequency dependent shear
modulus, static yield stress, and structures of dielectric electrorheological systems. It is shown that a
strong (applied field) frequency dependence of the static yield stress, in good quantitative agreement
with those measured experimentally, can arise from Debye relaxational effects that are typical of poor
insulators. Physical upper bounds on the yield stress and the shear modulus, as well as frequency
induced structural soft modes, are predicted. [S0031-9007(96)01165-9]

PACS numbers: 61.90.+d, 41.20.Cv, 62.20.–x
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Electrorheological (ER) fluids are a class of materi
whose rheological characteristics are controllable thro
the application of an electric field. In this work, w
consider a particular type of ER fluids, the dielectric el
trorheological (DER) systems, defined as colloidal d
persions of dielectric particles in which the electric
response of both the solid and the liquid component
governed by linear electrostatics. Besides being a to
of general theoretical interest in itself, the DER mod
has been widely invoked to explain the various aspe
of the ER phenomenon, such as the mechanism of c
formation [1], the solid structure under an electric fie
[2], and the widely observed quadratic field depende
of the yield stress [3]. In spite of these successes, h
ever, serious gaps still exist. Among them are the lac
quantitative understanding for the observed (applied e
tric field) frequency and conductivity dependencies of
yield stress, and the question concerning the upper bo
of ER shear modulus and yield stress. In the absenc
a first-principles account for those issues, the gaps in
understanding are the source of much speculation a
the basic mechanism of the ER effect and its poten
limitation(s).

In this Letter, we present a general framework for fir
principles DER model calculations that is based on
formulation of the problem as one of effective dielect
constant optimization. That is, since the operating
quencies of ER fluids are generally,104 Hz and the typi-
cal particle size and interparticle separation are,1022 cm,
most ER systems are in the “long-wavelength limit,”
the electrostatic limit, by a comfortable margin [4]. Pr
vided the components of the system are governed by
ear response, the DER model applies, and the electros
free energy density is given by2´zzE2y8p, where´zz is
the component of the effective dielectric tensor along
field szd direction [5], andE ­ Dfy, is the applied elec-
tric field, whereDf is the voltage difference andis the
length of the sample. The condition of minimum free e
ergy thus directly translates into the maximization of´zz

as a function of particle configurations, plus the cons
eration of configurational entropy for temperature effec
Below we focus only on the case where the electrost
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energy dominates over the temperature effects. Res
of our calculations show that the DER model not only a
counts quantitatively for the measured nonlinear (effecti
electrical response of ER fluids as well as the measured
quency dependence of the yield stress, but also predict
interesting frequency-induced structural soft mode that
yet to be observed. By considering the mathematical
gin of the frequency dependencies, upper bounds for
yield stress and shear modulus are obtained.

Consider a two-component DER model system cons
ing of spherical solid particles of radiusR and complex
dielectric constant́ 1 dispersed in a fluid characterize
by ´2. We assume the dielectric constants to have
form characteristic of Debye relaxation, i.e.,´ 2 ´` ­
´Dys1 2 ivtd, which is commonly observed in poor in
sulators at low frequencies. Here´` is the high frequency
dielectric constant,́D ­ ´sv ­ 0d, t denotes the relaxa
tion time, andv is the angular frequency. The electro
static problem to be solved is given by

=== ?

∑
1 2

1
s

hs$rd
∏

===f ­ 0 , (1)

wheres ­ ´2ys´2 2 ´1d is the only relevant material pa
rameter in the problem. Heref is the electrical poten-
tial and hs$rd is the characteristic function for the soli
component, defined as having the value 1 at those s
tial points occupied by the solid particles, and zero oth
wise. The formal solution to Eq. (1), given the conditio
of Dfy, ­ E ­ 1 in thez direction, can be expressed i
the operator notation as

f ­ 2
z

1 2 Gys
­ 2s

z
s 2 G

, (2)

where

G ­
1
V

Z
d $r 0hs$r 0d===0G0s$r 2 $r 0d ? ===0 (3)

is an integral-differential operator, withG0s$r 2 $r 0d ­
1y4pj$r 2 $r 0j denoting the Green’s function for th
Laplace equation, andV the sample volume. By defining
the inner product operation as

kfjcl ­
Z

d $r 0 hs$r 0d===0fp ? ===0c , (4)
© 1996 The American Physical Society 2499
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it becomes possible to write the effective dielectric co
stant as

´zz

´2
­ 2

1
V

Z
d $r

µ
1 2

1
s

h

∂
≠f

≠z

­ 1 1
1
s

kzjfl
1
V

. (5)

From Eqs. (2) and (5), it follows that the effective diele
tric constant is given by the Bergman-Milton represen
tion [6]:

´zz

´2
­ 1 2

1
V

X
n

jkzjfnlj2

s 2 sn
­ 1 2

X
n

fz
n

s 2 sn

­ 1 2
1
V

X
n,m

kzjcnl
ø

cn

Ç
1

s 2 G

Ç
cm

¿
kcmjzl ,

(6)

wheresn andfn are thenth eigenvalue and eigenfunctio
of the operatorG, andhcnj is an arbitrary complete basi
set. Since the matrix inversion operation in Eq. (6)
noted to be required only for a particular diagonal mat
element, the answer may be obtained efficiently by us
the recursive Green’s function method [7].

The remarkable feature about the representat
Eq. (6), is that the geometric information is separa
from the material information, in contrast to approach
that involve the direct numerical solution of the Lapla
equation. This separation means that the microstuct
information are given by the spectral function, i.e., by
value jkzjfnlj2yV ­ fz

n and the location of the polessn,
both of which are known to be real. Furthermore,sn must
lie in the intervalf0, 1g [6]. Once the spectral function
is obtained, it becomes simple to calculate the effec
properties and their associated frequency dependen
as these factors appear only ins. If either ´1 or ´2 is
complex and frequency dependent, then the resultins,
and consequentlý zz will be complex and frequency
dependent. Whereas the imaginary part of´zz charac-
terizes the overall electrical dissipation of the syste
the frequency dependence of the real part of´zz is what
gives rise to the frequency dependence of the yield st
and the shear modulus described below. It should
emphasized that the present formulation is rigorous andin-
cludes all the multipole interactions and (self-consiste
local field effects.

Provided the electrostatic ground state has a uni
local spatial structure, the target configurations for
maximum´zz can be limited to periodic structures. W
have performed numerical calculations of´zz to five-
decimal accuracy for six periodic structures—the bod
centered tetragonal (BCT), the face-centered cubic,
hexagonal, the body-centered cubic, the simple cubic,
the diamond. It was found that at any given concentrat
of the particles, body-centered tetragonal has the lar
´zz and face-centered cubic is a close second, with
rest decreasing in the order given above. The fact
2500
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-
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BCT is the favored structure is in agreement with pr
calculations based on dipole interactions [2] as well
more rigorous approaches [8,9]. A direct implication
our theory, that́ zz is maximized under a strong electr
field, is the nonlinear electrical response of the overall D
system. This nonlinearity in the electrical response
indeed been widely observed in various ER fluids [10].

A separate calculation has been carried out for cy
drical columns of particles arranged in the BCT structu
with the columns arranged in a two-dimensional trian
lar superlattice. For column diameters ranging from2R
to 30R, it is found that the columnar states are alwa
higher in energy than the pure BCT structure, phase s
rated from the fluid. However, the electrostatic ene
differences are at most 0.1% of the total electrostatic
ergy. We note that in most experimental situations p
ticles form columns, and the average column cross sec
is usually not big (on the order of five particles acros
The small energy difference between the column state
the pure BCT state means the overall yield stress and
shear modulus (of the DER model in its ordered state,
theE . Ec needed for the liquid-solid transition) may b
calculated by using the BCT ground state.

In order to calculate the shear modulus and the y
stress, it is necessary to perturb the system away f
its lowest electrostatic free energy state. For the B
structure, shearing in a direction perpendicular to thez axis
means not only a tilt of thec axis away from the electric
field direction by an angleu, but also a distortion [11] in the
lattice constantsc anda given bycyR ­ 2y cosu, ayR ­
f8 2 sc2y2R2dg1y2, shown schematically in the inset o
Fig. 1. As a result, under shear the volume fraction of so
spheres in the BCT structure is alsou dependent, given by
p0sud ­ 4p cos2 uy3s8 cos2 u 2 2d. For u small,´zzsud
,
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FIG. 1. Calculated stress, in units of Pascal, plotted as
function of strain, i.e., the tilt angleu as defined in the inset
The dashed line indicates the unstable regime. The maxim
stress is defined as the static yield stress. The parame
used in the calculation aré1 ­ 8.4 1 0.43i, ´2 ­ 2.71, E ­
1.32 kVymm, andp ­ 0.22. The inset shows the geometry o
the particles under shear.
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may be expanded about its optimal value as

Re

∑
´zzsud

´2

∏
­ Re

∑
´zzs0d

´2

∏
2

1
2

mu2 1 22 , (7)

wherem is the shear modulus in units ofj´2jE2y8p . It
may be expressed as

m ­ Re

Ω
2p´2

j´2jp0s0d

∑
Fxssd 2 Fzssd 1

≠Fzssd
≠su2d

∏
ju­0

1
p

3p0s0d

∑
´BCTs0d 2 ´2

j´2j

∏æ
, (8)

with p denoting the volume fraction of solid sphere
Fzssd ­ kzjss 2 Gd21jzlyV , Fxssd ­ kxjss 2 Gd21jxlyV ,
and´BCTs0d being theu ­ 0 effective dielectric constan
of the BCT structure. Because of the vertical nature of
structure, i.e., in either columnar or phase-separation s
(column diameter approaching∞), ´BCTs0d is accurately
related to the overall effective dielectric constant by t
relation

´zzs0d ­
p

p0s0d
´BCTs0d 1

∑
1 2

p
p0s0d

∏
´2 . (9)

For the calculation of the yield stress, it is necessary
go beyond the smallu expansion. Numerical evaluation o
the stress-strain relation, i.e., Rehj´2j

21≠´zzsudy≠uj versus
u, is found to display a maximum as shown in Fig. 1. B
definition, value of the maximum stress is the static yie
stress (in units ofj´2jE2y8p), as further strain would make
the stress decrease, i.e., the structure becomes unstab

Once the parameters of the spectral function have b
calculated, it is simple to evaluate the effective dielect
constant, the shear modulus, the yield stress, and t
frequency dependencies. In a first test of the theo
we compare the theoretical prediction in the effect
dielectric constant increase with that measured fo
simple two-component ER system, consisting of 22%
volume of monodispersed 1.5mm diameter glass sphere
[12] dispersed in silicone oil [13]. The ER fluid samp
was baked for 16 h at 140±C in order to remove trace
of water, and measured in a narrow-gap cell at 1 k
and fields up to 1 kV/mm. The saturation value of t
high field dielectric constant is found to be 5% larger th
that measured at the low field. By using the measu
dielectric constant of glass,́1 ­ 6.5 and silicone oil,
´2 ­ 2.71, we get an increase of 5.08%, in excelle
agreement with the experiment.

In Fig. 2, we compare the measured frequen
dependent static yield stress of the same ER system (s
symbols) with those predicted theoretically (solid line
The static yield stress was measured by using a stan
parallel plates torsional device. With a rms electric fie
of 1.32 kV/mm applied across the ER fluid sandwich
between the two parallel plates, the lower plate was rota
slowly, dragging the top plate, until slipping occurre
between the two plates. The stress at the point of slipp
was taken as the static yield stress. In curveA, the high-
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FIG. 2. Comparison between measured (solid symbo
and calculated (solid lines) frequency-dependent static y
stresses, in units of Pascal, for 22% by volume of 1.5-mm glass
spheres dispersed in silicone oil.A denotes the system afte
it has been baked at elevated temperatures to remove t
water. B denotes the same system before water removal.
measurement is done at the rms electric field of 1.32 kV/m
Parameters used to obtain the calculated results are give
the text.

frequency value of yield stress was calculated with
adjustable parameters. The agreement with experime
seen to be excellent. To explain the slight frequency
pendence, we have used the value oft ­ 4.8 3 1024 sec
and´D ­ 2 in the Debye form of́ 1svd. CurveB gives
the yield stress for the same ER system prior to wa
removal (i.e., baking at elevated temperatures). It
seen that both the value of yield stress and its freque
dependence are much larger. The theoretical curve
calculated by usinǵ1svd ­ 14.8 1 12ys1 2 ivtd, with
t ­ 6 3 1024 sec and the measured́2 ­ 2.71. A plau-
sible explanation for the significant effect of trace wat
is that under a high electric field the water is attract
to the interface between oil and glass, coating the gl
particles and thus modifying its effectivé1svd. By using
the same parameters and the high-field BCT structu
the calculated conductivity of the system at 10 kHz
2.5 3 1028 Sym. This compares favorably with th
measured value of3 3 1028 Sym at the same frequency
Our results thus demonstrate that the observed freque
dependence of ER fluids’ yield stress can be traced to
Debye relaxation processes common in poor insulat
and may be explained quantitatively by the DER mode

The frequency dependence of the shear modulus
the same systems can be directly evaluated from Eq.
Here, unfortunately, no experimental data are yet av
able. The calculated results (solid lines), using the sa
parameters as those in Fig. 2, show similarity to that
the yield stress. However, wheńD is large, a novel
phenomenon is predicted. That is, over some finite f
quency range it is found that the ground state is unsta
to a slight elongational distortion of the BCT lattice
and the new ground state is one where thec axis is
2501
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FIG. 3. Calculated frequency dependencies of the shear m
uli, in units of Pascal, for the same systems as shown in Fig
shown by the solid lines. The dashed line is calculated by us
the same parameters as those of curveB, except́ D is increased
to 85. Soft modes at two frequencies are clearly seen.

elongated and thea axis is correspondingly shortened. Th
dashed line in Fig. 3 is calculated by using´2 ­ 2.71,
´1svd ­ 14.8 1 85s1 2 ivtd, with t ­ 6 3 1024 sec.
It indicates two frequencies where there are soft modes
sociated with the structural instabilitysm ­ 0d. Between
these two frequencies the ground state is still a BCT str
ture, but with thec axis elongated by up to 0.85%, and th
a axis shortened. The shear modulus for those frequ
cies intermediate between the two soft mode frequen
is calculatedwith respect to the alternate ground state.It
is interesting to note that in contrast to the shear mo
lus, the yield stress calculated with the same parame
gives no hint of any irregularities at finite frequencies. T
reason may be gathered from Fig. 1, which indicates
the yield stress is always defined at finite values ofu, and
the difference between the two “ground” states is ne
gible at those tilt angles.

Mathematically, the frequency dependencies of
shear modulus and the yield stress are the direct co
quence of the magnitude change ins as the frequency
varies. Since the lowestsn ­ 0 for touching spheres, the
effective dielectric constant, and thus the shear modu
and the yield stress, are enhanced ifjsj ! 0 (and vice
versa) as seen from Eq. (6). These considerations
urally expose a deep connection between the freque
variation of the rheological properties and their upp
bounds, which is a question of considerable pract
importance for potential applications of ER fluids. A
the value ofjsj ! 0, the question of whether the spher
are actually touching becomes crucial. For the purp
of constructing a physical upper bound, we assume
(1) j´1y´2j ! `, (2) the surfaces of the spheres cann
approach each other closer than a small distance2d,
e.g., the lower limit on atomic separation (so the low
sn is slightly greater than 0), and (3)p # pBCT . With
these conditions, we obtain upper bounds on the y
2502
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stress and shear modulus to be1.38
p

Ryd and1.9sRydd,
respectively, in units ofj´2jE2y8p. Taking R ­ 20m,
d ­ 1 Å, E ­ 1 kVymm, and´2 ­ 2.5, we get 8 kPa
and 4 MPa, respectively, for the two bounds. Since th
upper bounds are obtained by settings ­ 0, they are
independent of whether we use complex or real´1 and´2.
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