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We use the Onsager principle to derive a two-phase continuum formulation for the hydrodynamics of

the electrorheological (ER) fluid, consisting of dielectric microspheres dispersed in an insulating liquid.

Predictions of the theory are in excellent agreement with the experiments. In particular, it is shown that

whereas the usual configuration of applied electric field being perpendicular to the shearing direction can

lead to shear thinning at high shear rates and thus the loss of ER effect, the interdigitated, alternating

electrodes configuration can eliminate the shear-thinning effect.
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Electrorhoelogical (ER) fluids [1–11], consisting of
solid particles dispersed in an insulating carrier fluid, con-
stitute a class of colloids whose rheological characteristics
are controllable through the application of an external
electric field. They have broad applications potential in
active dampers, valves, etc. [2,3]. While the static ER
characteristics have been studied successfully with the
effective dielectric constant formulation [1,6,11], the dy-
namic behavior of ER fluids still represents a challenging
area. Direct simulations involving a number of discrete,
electrically interacting particles would be computationally
limited by the particle number [12–18]. Bingham fluid [19]
has often been used for the prediction of ER dynamics, in
which the dynamic shear stress � is given by � ¼ �0 þ � _�,
with � being the viscosity, _� the shear rate, and �0 the
threshold shear stress beyond which the fluidlike behavior
is recovered. While the Binghammodel clearly captures an
essential element of the ER dynamics, it fails to account for
the often-observed shear-thinning behavior and the sensi-
tivity of ER rheology to electrode configuration(s).

In this Letter, we present a two-phase continuum model
for the ER fluid dynamics, in which the electrical interac-
tion energy between the solid particles is treated on the
basis of (induced) dipole-dipole interaction, valid in the
limit of weak ER effect. By regarding the number density
of solid particles as a field variable, we derive the equations
of motion by using the Onsager principle of least dissipa-
tion [20–22]. Results obtained are in excellent agreement
with the experiments. In particular, it is shown that the
shear-thinning behavior of ER dynamics may be avoided
by using a planar, alternate-electrode configuration. This
can have positive implications for ER fluid applications.

Consider solid microspheres of radius a, dielectric con-
stant "s, and mass m suspended in oil with dielectric

constant "f. In the presence of external field ~Eext, the solid

particles will be polarized with an induced dipole moment

~p ¼ ½ð"s � "fÞ=ð"s þ 2"fÞ�a3 ~E‘, where ~E‘ denotes the

local electric field. Interaction between the induced dipoles
means a phase separation into two components. Below, we
first focus on the dense colloidal phase, denoted the ‘‘s’’
component.
To regularize the interaction energy, we assume the

point dipole ~p to be situated at the center of the micro-
sphere, and a repulsive interaction potential is introduced
between any two spheres i and j (situated at ~x and ~y,
respectively) as �ðj ~x� ~yjÞ ¼ "oða=j ~x� ~yjÞ12, where "o
is a suitably chosen energy constant. We treat the solid
particles collectively by regarding their density nð ~xÞ ¼
fsð ~xÞð4�a3=3Þ�1 as a field variable, where fsð ~xÞ denotes
the local volume fraction of microspheres. The viscosity of
the dense colloidal phase, which is affected by the particle-
particle repulsive interaction, will be modeled as a function
of n, fitted to experimental results. Free energy for the s
component may be expressed as

F½nð ~xÞ� ¼ � 1

2

Z
Gijð ~x; ~yÞpið ~xÞnð ~xÞpjð ~yÞnð ~yÞd~xd~y

�
Z

~Eextð ~xÞ � ~pð ~xÞnð ~xÞd~x

þ 1

2

Z
�ðj ~x� ~yjÞnð ~xÞnð ~yÞd~xd~y; (1)

where Gijð ~x; ~yÞ ¼ �rirjj ~x� ~yj�1 is the dipole-dipole

interaction operator, and repeated indices imply summa-
tion in Eq. (1). We ignore the entropic effects because they
are much smaller than the electrical energies of the relevant
particle sizes under consideration. Avariation of F [23–27]
with respect to n leads to �F ¼ R

�½nð ~xÞ��nd~x, where
�½nð ~xÞ� ¼ � ~E‘ð ~xÞ � ~pð ~xÞ þ R

�ðj ~x� ~yjÞnð ~yÞd~y is the

chemical potential, with E‘
i ð ~xÞ ¼ Eext

i ð ~xÞ þR
Gijð ~x; ~yÞpjð ~yÞnð ~yÞd~y denoting the local field. Since n is

locally conserved, there is a continuity equation for n,

given by _nþ ~r � ~J ¼ @tnþ Vs � ~rnþ ~r � ~J ¼ 0, where
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Vs is the ‘‘s’’ phase velocity, and ~J is a convective-diffusive
current density. It is now desirable to derive the expression

for ~J, as well as the coupled equations of motion for the
two components, via the Onsager principle.

The Onsager action functional [20–22] is given by A ¼
_Fþ�, where _F is the time variation of the free energy and
� is half the dissipation rate(s). The minimization of A
with respect to the rate(s) would lead to the equation(s) of
motion which insures the balance between the dissipative
forces and conservative forces (those derivable from free
energy), as well as to the most probable dynamics of the
dissipative processes. For the ‘‘s’’ component, we have

Að ~J; ~VsÞ ¼ _Fþ�, where

_F ¼
Z

�@tnd~x ¼
Z

�ð _n� ~Vs � ~rnÞd~x

¼ ð ~r� � ~J þ n ~r� � ~VsÞd~x; (2)

and

�¼
Z �

1

4
�s½@ið ~VsÞjþ@jð ~VsÞi�2

þ �

2n
J2þ1

2
Kð ~Vf� ~VsÞ2

�
d~x; (3)

together with the incompressibility condition ~r � ~Vs ¼ 0,
which can be implemented by using a Lagrange multiplier
�. In Eq. (3), � is a frictional coefficient. Energy dissipa-
tion rate per unit volume is n�V2

d ¼ �J2=n. Taking into

account the factor 1=2 leads directly to the expression
shown in Eq. (3). The other two terms of � are simply
the well-known viscous dissipation, with �s denoting the
colloidal viscosity, and the dissipation caused by the fric-
tion between the two components, characterized by a
constant K. We choose the lowest-order estimate of K ¼
�n that is linear in n, since the results show that ~Vs � ~Vf so

that the calculated stresses are insensitive to K. Variational
minimization of the Onsager functional with respect to the

rates ( ~J, ~Vs) leads to ~J ¼ �ðn=�Þ ~r� and the Stokes
equation

0 ¼ � ~rps þ �sr2Vs þ n ~r�þ KðVf � VsÞ; (4)

where � ¼ �2ps, and we propose the Stokes form � ¼
6��sa for the friction coefficient. For the colloidal vis-
cosity �s, we have used numerical interpolation to repro-
duce the experimentally observed dependence
�s=�f / exp½0:6=ð0:698� fsÞ� at close to the random

closed packing fraction of 0.698 [28], and to the form
�s=�f ¼ 1þ 2:5fs þOðf2s Þ at low solid particles concen-

tration [29]. A similar but simpler calculation involving ~Vf

would lead to the equation

0 ¼ � ~rpf þ �fr2Vf þ KðVs � VfÞ (5)

for the fluid component. When the inertial effects are not
negligible, momentum balance requires the left-hand sides

of Eqs. (4) and (5) be replaced by 	s
_~Vs and 	f

_~Vf, respec-

tively, with 	s ¼ mnð ~xÞ þ ð1� fÞ	f. Together with the

nonslip boundary conditions for both components, the
above formulation forms a consistent mathematical
scheme.
We have implemented the numerical codes [30] so as to

make predictions that can be compared with the experi-
ments. In Fig. 1(a), we show that for an electric field

FIG. 1 (color online). (a) Calculated shear stress plotted as a
function of strain (the angle 
) under an electric field of
2 kV=mm. The cell is 650 �m� 650 �m� 2a (y direction),
with periodic boundary condition along the shearing direction x.
To facilitate the formation of columns under an electric field, the
initial density is given by no þ �n cosðkxÞ. The inset shows the
breaking of the columns at around the yield stress point. The
static yield stress is 374 Pa in this case. (b) Calculated (averaged)
dynamic shear stress under the Couette flow condition for the
same cell as in (a). By extrapolating (with the solid line fitted to
the simulation results) to zero shear rate, the dynamic yield stress
is found to be 278 Pa. The inset shows the stress fluctuations at a
shear rate of 100 s�1. Here, a ¼ 5 �m, m ¼ 1:2� 10�9 g,
"s ¼ 10, "f ¼ 2, �f ¼ 10 cP, 	f ¼ 0:96 g=cm3, and overall

fs ¼ 30%. The zero-field shear stress is very small; hence, the
behavior shown can be taken to be that for the ER effect only.
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applied across two parallel electrodes, the model can re-
produce the ER shear elastic behavior up to a critical strain
associated with the static yield stress, beyond which the
fluid behavior emerges. The shear elasticity is the result of
column formation as seen in the inset to Fig. 1(a). Here, red
(dark) indicates a high value of n and blue (light) as a low
value. When the top plate is moved at a constant speed
relative to the bottom plate to generate a Couette flow, the
resulting shear stress experienced on the top plate is plotted
as a function of time in the inset to Fig. 1(b). Fluctuations
are seen which reflect the breaking and re-attachment of
the columns. The time-averaged stress is plotted as a
function of shear rate in Fig. 1(b). The behavior is very
similar to the Bingham fluid at low shear rates, with an
extrapolated dynamic yield stress that is �30% lower than
the static yield stress shown in Fig. 1(a).

Experiments were done in the Poiseuille flow configu-
ration, with different electrode configurations (see insets to
Figs. 2 and 3). The ER fluid was prepared by dispersing
molecular sieve particles (product type: 3A 1=16, 5 �m in
diameter, provided by Nacalai Tesque Inc., Japan) into the
silicone oil with a particle concentration of 11.5 vol.%. The
prepared ER fluid was baked at 120 �C for 1 h to remove
any moisture. Tensile machine (MTS SINTECH 10/D
Frame Specification) was used for the ER effect measure-
ments, carried out with flow rates varying from
0:05–150 mm=min through a constriction formed by two

parallel plates with a width of 1 cm, length 4 cm and
separated by 1 mm [31]. The force on the piston of the
cell was measured by a force gauge and recorded with a
software package. The resulting pressure difference on two
ends of the constriction can be easily obtained from the
time-averaged force. A DC power supply (SPELLMAN
SL300) provided high voltages applied to the ER fluids.
In Fig. 2, it is seen that for electric field applied across

the two parallel plates, there is clearly a shear-thinning
behavior at high shear rates [32,33]. There is a simple
explanation to this phenomenon based on the fact that
the strength of the columns is always along the applied
electric field. Hence, when the columns are tilted signifi-
cantly away from the perpendicular field direction, the
resistance to shear is decreased. The solid lines are the
theory predictions. It is seen that the agreement is excel-
lent. As the theoretical yield stress follows a strictly E2

variation, the experimental results are seen to be in general
agreement with this trend.
An alternative design involving the use of interdigitated

electrodes (inset to Fig. 3) would mean that the applied
electric field can have a significant component parallel to
the shearing direction. Figure 3 shows the measured (sym-
bols) and calculated (solid lines) results, up to a high shear
rate of 4700=s. The shear-thinning effect no longer occurs,
seen to be correctly predicted by our continuum model
with no adjustable parameters.
We wish to thank T. Z. Qian for helpful discussions and

to acknowledge Hong Kong RGC Research Grant
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FIG. 3 (color online). The pressure difference due to the ER
effect �PER ¼ �Pmeas ��Pvisc, plotted as a function of shear
rate for the planar, alternate-electrode configuration. The sym-
bols and lines represent the experimental and our theoretical
results, respectively. From bottom to top are electrical field equal
to 1 kV=mm, 1:5 kV=mm, and 2 kV=mm. The parameter values
used in the calculations are the same as that in Fig. 2.

FIG. 2 (color online). The (time-averaged) pressure difference
due to the ER effect �PER ¼ �Pmeas ��Pvisc, plotted as a
function of shear rate for the electrode configuration (with a
gap of 1 mm) shown in the inset. The symbols and lines
represent the experimental and our theoretical results, respec-
tively. From bottom to top: applied electric field is 1 kV=mm,
2 kV=mm, 3 kV=mm, and 4 kV=mm. At 1 kV=mm, the pres-
sure difference is very small at low shear rates. Here, a ¼
2:5 �m, m ¼ 1:2� 10�10 g, "s ¼ 2:9, "f ¼ 2, �f ¼ 50 cP,

	f ¼ 0:96 g=cm3, and overall fs ¼ 11:5%.
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