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Effective Mass Density of Fluid-Solid Composites
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We show through rigorous derivation and experimental support that the dynamic effective mass density
of an inhomogeneous mixture, used in the prediction of wave velocities in the long wavelength limit, can
differ from the static version—the volume average of the component mass densities. The physical reason
for this difference is explained. The dynamic mass density expression, first derived by Berryman more
than two decades ago, is shown to give a closer correspondence between the acoustic and electromagnetic
metamaterials by allowing for negative mass densities at frequencies around resonances.
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The effective mass density of a composite is one of the
most basic quantities in the study of materials. It is com-
mon sense that the effective mass density of a mixture of
materials should be their volume average, D = Dy =
D,(1 — f) + D,f, where D, and D, are the mass densities
for the matrix and the inclusions, respectively, and f is the
filling ratio of the solid inclusions. This expression is
denoted below as the volume-averaged mass density
(VAMD). An important application of the composite ef-
fective mass density is in the prediction of wave velocities
in the low frequency limit, where the relevant wavelength
is much larger than the typical feature sizes in the com-
posite. More than two decades ago, Berryman [1] derived a
different effective mass density expression for the predic-
tion of (fluid matrix—solid) composite wave properties in
the long wavelength limit, based on the average 7-matrix
approach:

D¢iy — D,
(d = 1)Deg + Dy

D, — D,
d—1)D, + D,

=f )]
where d denotes the spatial dimensionality of the problem.

The Berryman effective mass density expression is
noted to differ significantly from the intuitive VAMD,
and for all the intervening years after the initial derivation
it has remained a curiosity rather than extensively used,
mainly owing to the lack of experimental support as well as
to the strong sense that the intuitive VAMD must be
correct, since otherwise it would be equivalent to stating
the rather radical principle that the static mass density for a
composite should be different from its dynamic mass
density, even in the long wavelength limit. An additional
objection to the Berryman expression is that the derivation
treats the multiple scatterings inherent in the inhomoge-
neous system only in an averaged sense, and therefore not
rigorously.

In this Letter, we show through rigorous derivation
that the recent experimental evidence [2] has indeed pro-
vided strong support to the radical principle that the
Berryman effective mass density expression should be
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the correct one to use in predicting the dynamic wave
properties of fluid (matrix)—solid composites in the long
wavelength limit, and that the VAMD is only a special
case, obtainable from the Berryman expression when the
components’ mass density contrasts are small. The impli-
cations of this finding, especially relevant to the acoustic
correspondence with the doubly negative response func-
tions (electric and magnetic) of electromagnetic metama-
terials, are presented.

The starting point of our considerations is the recent
experiment [2] of Cervera et al., in which the sound
velocity was measured in a two-dimensional phononic
crystal [2—17] composed of regular arrays of rigid cylin-
ders in air, confirming that in the low frequency (long
wavelength) regime the sound propagates at subsonic ve-
locity. In Fig. 1, we show the comparison of experimental
results with the prediction of the usual effective medium
theory (EMT) [18], in which the effective bulk modulus
B is given by

1 _1-f

= —+ -
Begt B, B

2

where B; = A; and B, = A, + 2 u, are the bulk moduli
for the liquid matrix and the solid inclusions, respectively,
with A and u being the Lamé constants. The effective mass
density used in the effective medium theory prediction
shown in Fig. 1 is given by VAMD. A very large discrep-
ancy is seen. As the experiment is done with a regular array
of solid cylinders, the system is amenable to accurate
numerical predictions using the multiple scattering theory
(MST) [17]. The MST-calculated results are shown as the
solid triangles. Excellent agreement is seen.

Since the experiment was clearly in the long wavelength
regime (with the wavelength at least 9 times the lattice
constant), it becomes an intriguing question as to the form
of the long wavelength (or the low frequency) limit of the
exact theory, the prediction of which is shown to give good
agreement with the experiment. This is because at the low
frequency limit the dispersion relation for phononic crys-
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FIG. 1. The effective sound velocities calculated with VAMD-
based EMT and with MST, respectively, compared with the
experimentally measured effective sound velocity in a 2D pho-
nonic crystal composed of Al cylinders arranged in a hexagonal
lattice in air, plotted as a function of the filling ratio of Al
cylinders. V, is the sound velocity in air. Here the frequency of
sound is 600 Hz, the Al cylinders have a maximum diameter of
3.175 cm, with a hexagonal lattice constant of 6.35 cm. The
wavelength of sound in air, 57 cm, is thus much larger than either
the cylinder diameter or the lattice constant. The wavelengths of
sound in Al, 10.68 m for longitudinal wave and 5.19 m for
transverse wave, are even larger. The use of VAMD in the
effective medium prediction causes the large discrepancy seen
in the figure.

tals has to be linear since one wavelength covers many
periods of the structure, hence losing its wave resolution.
Phononic crystals at low frequencies should therefore al-
ways possess well-defined effective material parameters.
As the multiple scattering theory accounts for all the
multiple scatterings in the system, it removes a principal
objection to the Berryman effective mass density expres-
sion, which treats the multiple scattering only in an aver-
aged sense.

MST [15-17] accounts fully for all the multiple scatter-
ing effects between any two scatterers, plus the vector
character of elastic waves, without any approximation.
For our particular case of 2D elastic MST in polar coor-
dinates, the displacement of the incident wave on scatterer
i and the scattered wave (by the same scatterer) may be
expressed, respectively, as

up) =Y aidu(p),  ui(p) = biH,(p)),
n n

(3)
where the vector functions J,(p) and H, (p) are defined as

7,(p) = VI, (ayp)e™*],

- 4)
H,(p) =

V[Hn(alp)ein(p])

with a; being the wave number in the fluid matrix, ; =
(p, @) denoting the polar coordinates, and J,,(x) and H,,(x)
on the right side of Eq. (4) denoting the nth order Bessel

function and Hankel function of the first kind, respectively.
Since the incident wave on scatterer i comes from the
scattered waves by all the scatterers except scatterer i,
we have

W)= > bHu(p) )
JFi n"

With the help of the addition theorem, we can prove that

H //(p]) - ZG Iy J (6)

—_

where G;’;l, = G,y(R; — R;) denotes the translation (from

scatterer i to scatterer j) coefficients, with R, denoting
the position of scatterer i(j). We refer to Ref. [17] for the
precise definition of G,,/(R). The expansion coefficients
A = {a,} for the incident field and B = {b,} for the scat-
tered field with reference to a given scatterer are related

through the elastic Mie scattering matrix T = {T,,,/} for the
scatterer by

n = ZTnn’an/' (7
Substituting Egs. (3), (6), and (7) into Eq. (5), we arrive at
Z(aij(snn’ - ZGiljn”Ti”n/>a{l/ = 0. (8)

jn’ n"

For a periodic system, the normal modes of the system
may be obtained by solving the following secular equation:
det|T, ) — G, (k)| =0, 9)

where G, (k) = p.0G,(—R)exp(ik - R). By taking
the low frequency limit of a; — 0 and by retaining the

dominant terms, Eq. (9) is simplified to a 3 X 3 matrix
equation [19]:

D,+D, 2f ixf _f
D\—D, 1—x2 1—x2 1—x2
_inf B, 2f ixf _
det 1—x2 B,—B, + 1—x2 1—x2 O’
o _ixf D,+D, + 2f
1—x% 1—x% D,—D, 1—x2
(10)
in which x = V;/V is the constant to be evaluated, while

f, By, and B, are the filling ratio and the elastic moduli,
respectively [20]. It can easily be verified that Eq. (10) is a
quadratic equation of x?, and by omitting the trivial root
x2 = 1, we obtain the root

(D + Dy) — (D, — Dy)f B,

2 —
= . (1D

(Dy + Dy) + (D, = D))f fB1 + (1 = f)B,
By using the expression V. = gffr and the effective

medium expression for B, Eq. (2), we arrive at precisely
the Berryman effective mass density in 2D. Equation (11)
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is noted to be valid for both the square and the hexagonal
lattices. Hence, it is plausible that the Berryman effective
mass density expression is generally valid for isotropic
composites. This is the case especially since our derivation
verifies, at the same time, the effective bulk modulus
formula, Eq. (2), which is valid in general for isotropic
composites consisting of solid inclusions in fluid [18].

As the static version of the effective mass density must
be the VAMD (verifiable through simple weighing of the
composite and its constituents, and measuring the vol-
umes), the reason for the different (long wavelength) dy-
namic version can be found in the fact that, for wave
properties, VAMD contains the implicit assumption of
wave field homogeneity in the long wavelength limit.
This assumption can be violated (even in the long wave-
length limit) when there is a very large impedance mis-
match between the two components, such as in the
experiment of Cervera et al. In Fig. 2(a) we show the
calculated wave field intensities, in color, for the relevant
experiment. It is noted that the wave field is nearly zero
inside the cylinders. Hence, it is almost impossible to have
the condition for the validity of VAMD. The observed
decrease in wave velocity can be ascribed to the wave
paths’ increased tortuosity. However, when the impedance
mismatch is relatively moderate, e.g., when the mass den-
sity contrast is small, then the Berryman expression yields
the VAMD. This is shown in Fig. 3, where the two ex-
pressions yield the almost identical effective mass density
for the PMMA cylinders in water. For comparison with
Fig. 2(a), we have also plotted the displacement field
intensities for the PMMA-water system in Fig. 2(b), in
which the wave field homogeneity is evident. As our
derivation is obtained by taking the long wavelength limit
of the rigorous scattering wave field solutions, it is not
surprising that such a formula inherently accounts for the
wave field inhomogeneities as they exist in reality. In Fig. 3
we have also examined the case of air cylinders in water,
and it is seen that Dz << Dy, as well. It is easy to show from
Eq. (1) that Dy, is an upper bound to Dy. We have verified
that even in the case of fluid inclusions in a fluid matrix, the
Berryman mass density expression is valid.

It should be noted that the effective bulk modulus ex-
pression, Eq. (2), derived via either the average T matrix
approximation [1] or the coherent potential approximation
[18] (and verified through the low frequency limit of the
MST), represents the low frequency limit of the n = 0
angular scattering channel, whereas the Dy expression is
the low frequency limit of the n = 1 channel. In the case
examined above, the confinement of the wave amplitude in
the interstitial space also implies that the effective bulk
modulus is dominated by that of the fluid, just as predicted
by Eq. (2), i.e., the two are consistent in this case. But even

under general considerations Dg and Eq. (2) should both be
|
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FIG. 2 (color). (a) MST-calculated displacement field inten-
sities in the phononic crystal composed of Al cylinders arranged
in a hexagonal lattice in air with the filling ratio of Al cylinders
being 0.36. Blue is low field intensity, and red is high field in-
tensity. The wave vector is along the y direction, and « is the lat-
tice constant. It is seen that the wave amplitude is nearly zero in-
side the Al cylinders. Decreasing the frequency further does not
alter this fact. (b) The same for PMMA cylinders in water. Wave
field is seen to be much more homogeneous than that in (a).

valid, since they represent separate, yet at the same time
parallel, wave scattering channels.

An important implication of our conclusion is in regard
to the correspondence between acoustic [21,22] and elec-
tromagnetic [23,24] metamaterials. As VAMD can never
be negative, it follows that if it is valid, then there can never
be a one to one correspondence between the two classes of
metamaterials in the effective medium limit. From Eq. (1),
it is easily perceived that the expression allows a simple
extension to the case when there is a n = 1 resonance [19]:

Dy — Dy af

Dyt + Dy im(aR)? S (12

where

Fi[J,(a R) — a;RJy(a R)] + F,[4J5(a;R) — a1 RJ5(a R)]

S =Ty =~

Fi[H\(a\R) — a1RH,(a R)] + F>[4H,(a,R) — ayRH3(a R)]
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FIG. 3. The Berryman effective mass density normalized with
the VAMD for three different phononic crystals composed of Al
cylinders in air, PMMA cylinders in water, and air cylinders in
water, plotted as a function of the filling ratio f of the cylinder
inclusions. D is the mass density of the matrix, and D, is the
mass density of inclusions.

is the Mie scattering coefficient for the angular momentum
n = 1 channel for a single cylinder with radius R, while F
and F, are functions of variables R, &, a,, and 3,, with
a4, a,, and B, being the longitudinal wave number in the
background fluid, and longitudinal and transverse wave
numbers in the solid scatterers, respectively. From
Eq. (12) it is easily seen that the effective mass density
can be negative for |S,| > ”(ﬁi’.’?)z. But if there is a reso-
nance in the n = 1 channel, the modulus of the scattering
amplitude can be large, so the effective mass density can
turn negative as well. This fact was noted in Ref. [22], but
the justification for using the Berryman mass density ex-
pression was lacking in that case.

In conclusion, we find the Berryman effective mass
density to be the correct one for predicting dynamic
wave properties, regardless of the impedance mismatch
between the components. Our conclusion is based on tak-
ing the long wavelength limit of the rigorous multiple
scattering theory, and on excellent agreement with the
experimental result of Cervera et al..
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