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Abstract

Electrorheology (ER) denotes the control of rheological characteristics through applied electric field. ER fluids constitute a class of colloids
whose viscosity can increase under increasing electric field. Under very strong fields some ER fluids can turn into anisotropic solids, characterized
by a yield stress. The recent discovery of the giant electrorheological (GER) effect in suspensions of nanoparticles has challenged the conventional
wisdom on ER fluids, as the GER fluids can break the theoretical upper bound on the (high-field state) yield stress. Starting from experimental
observations of the GER characteristics, we show that the model of aligned molecular dipole layers in the contact region of coated nanoparticles
can yield predictions in excellent agreement with measured data. The statistical mechanics of the aligned dipole layers is studied through Monte
Carlo simulations. We propose electrowetting between the particles and the suspending liquid, with hydrogen bonding as a contributing element,
in inducing the aligned state.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Electrorheological fluids [1–13] constitute a type of colloidal
suspensions consisting of dielectric particles dispersed in an
insulating oil. The marvelous feature of an ER fluid is that
it can solidify into a jelly-like state almost instantaneously
(1–10 ms) when subject to an externally applied electric
field with moderate strength (a few kV/mm), with a stiffness
varying proportionally to the field strength. The liquid–solid
transformation is reversible. Once the applied field is removed,
the original flow state is recovered. Such characteristics enable
ER fluids to be an electro-mechanical interface that, when
coupled with motion sensors and electronic control systems so
as to correlate external conditions with the ER characteristics,
can mean controllability and responsiveness of mechanical
devices. In particular, ER-based active dampers and clutches
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have recently been demonstrated [14–17]. However, ER fluids
have yet to find widespread commercial applications, mainly
due to the fact that the maximum yield stress achievable by
most of the conventional ER fluids is less than 10 kPa, much
below ∼30 kPa required by many mechanical devices.

Recently, a new type of ER fluid with the giant
electrorheological (GER) effect was discovered [18]. The
GER fluids consist of coated nanoparticles (BaTiO(C2O4)2 +

NH2CONH2) suspended in silicone oil. In the core/shell
structure (Fig. 1(a)), the urea coating serves as an ER promoter.
Under an applied electric field, induced polarization in the
particles causes their aggregation into columns aligned along
the field direction (Fig. 1(b)). These columns are responsible
for the solid-like yield stress when sheared perpendicular to
the columns. A closer look at one of the columns is shown
in Fig. 1(c), where it is seen that the particles’ contact areas
are somewhat flattened, indicating a degree of softness in the
coatings.

The static yield stress curves for two volume fractions,
measured under DC electric fields, are shown in Fig. 2. For
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Fig. 1. Images of nanoparticles in GER suspensions. (a) TEM image of coated nanoparticles. Urea coatings are clearly seen. (b) Optical microscopic image of a
sample prepared in epoxy, solidified under an applied field E of 2 kV/mm. Columns aligned along the field direction are visible. (c) TEM image of a section of the
column shown in (b). The arrows indicate one of the flattened interfaces.
Fig. 2. Static yield stress plotted as a function of applied electric field for two
solid concentrations. Symbols denote experiment; solid lines are theory. Inset:
logarithm of the current density J plotted as a function of

√
E . The dashed

straight lines serve to delineate the relationship ln J ∝
√

E , indicating the
mechanism of activation over the Coulomb barrier.

the sample with solid particle volume fraction of ∼30% (with
a zero-field viscosity of 100 Poise), the yield stress can reach
17 kPa at E = 1 kV/mm and increases to 130 kPa at
5 kV/mm.

The corresponding current densities are shown in the inset.
The current density J is below 4 µA/cm2 for E < 2 kV/mm,
and increases to 110 µA/cm2 at 5 kV/mm for the 30% sample.
It has a wide operational temperature range of 10–120 ◦C; the
working current density is low and the reversible response time
is less than 10 ms.

Two distinct features of the GER fluids are noted in Fig. 2.
To describe the basis of comparison, we first make a brief
digression on the “conventional ER fluid mechanism”, based on
induced polarization (owing to the dielectric constant contrast
between the solid particles and the fluid) of suspended dielectric
particles. In the heuristic dipole model for induced particles,
a random dispersion is not the lowest energy state. Instead,
the polarized particles would tend to form chains, and the
chains would coalesce into columns at higher field strength. It
turns out that an exact treatment of the problem is possible, in
which not only the dipole interaction but all the higher-order
multipoles, local field effect, and electrical conductivity effects
were included [13]. In this so-called dielectric ER (DER) model
(based on the assumption that components of the ER fluids
exhibit linear response to the electric field), theoretical upper
bounds on the yield stress may be obtained. It varies as [13]

1.38
√

R/δ (1)

in units of ε f E2/8π . Here δ denotes the separation between
the surfaces of neighboring particles and ε f is the dielectric
constant of the liquid. For the purpose of calculating the
magnitude of the upper bound, it is generally taken to be 1–2 Å.
Several aspects of this expression should be noted. First, the
yield stress varies as the square of the applied electric field. This
follows from the fact that the yield stress is proportional to the
electrostatic energy density −P · E, where P is the polarization
density. If the polarization is induced, then in the linear regime
P is proportional to E; hence the square dependence on E.
Second, the upper bound scales as the square root of particle
size. In other words, the induced polarization mechanism favors
larger particles. This behavior has been experimentally verified
[19]. Third, for a fixed electric field and particle size, there is a
maximum value for the yield stress, given by Eq. (1). We shall
see that the GER effect violates all three aspects of the induced
polarization DER model. Hence it represents a new paradigm
that requires new modeling considerations.

From Fig. 2, it is seen that the yield stress can be over
100 kPa. For a particle size of 50–80 nm, this value is more
than one order of magnitude larger than the upper bound. The
electric field variation is seen to be mostly linear instead of
quadratic, indicating a constant (saturated) polarization. As we
will see later, the particle size scaling behavior is also opposite
to that predicted by Eq. (1). The purpose of this article is to
give an explanation of the GER effect. In what follows, we
first present the model of aligned dipolar layers in Section 2,
and show that it can yield predictions, detailed in Section 3,
in excellent agreement with the experiments. In Section 4 the
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statistical mechanical underpinnings of the model are examined
through Monte Carlo simulations. We propose electrowetting,
with hydrogen bonding as an contributing element, in inducing
the alignment layers by energetically favoring the aligned state
in the form of lower interfacial energy between the particles and
the suspending liquid.

2. Saturation polarization model

The solid particle of the GER fluids consists of a core
of amorphous, porous BaTiO(C2O4)2, coated with a liquid-
like layer of urea. An important observation about the GER
colloid is its large dielectric constant (measured by an LCR
meter (HP 4192)), on the order of 50–60 over the temperature
range 10–120 ◦C for the dense samples (>30% solid volume
fraction). Since silicone oil has a dielectric constant of ∼2,
this large value is attributed to the coated nanoparticles, where
the focus is on the coating. However, the dielectric constant
of bulk urea is relatively small, about 3.5, although urea is
known to have a large molecular dipole moment of µ ≈ 4.6
Debye (and a molecular number of 1.3 × 1022 cm−3). Thus
urea, in the form of thin coatings, has a significantly larger
dielectric response due to the existence of the interfaces. In
particular, the short-range (non-dipolar) interaction between
the coating molecules and the core (barium titanium oxalate)
particle, and/or the interaction of the molecular dipoles on the
oil-coating interfaces, must be such that the molecular dipoles
in the coating are not locked into anti-parallel pairs, which
would mean insensitivity to the external field and hence a small
dielectric response. This is supported by an estimate of the
polarizability α based on the free-dipole model, α = µ2/3kBT ,
where kB is the Boltzmann constant and T the temperature
(=300 K), which yields a dielectric susceptibility χ ≈ 5 (with a
molecular volume of ≈100 Å3), implying a dielectric constant
ε = 1 + 4πχ ≈ 60 that is in reasonable agreement with the
measured value. It is envisioned that there is water inside the
porous core (almost inevitable from the fabrication process),
and the presence of water plays a role in the formation of the
urea coating layer and its liquid-like state.

We propose the mechanism of saturation surface polariza-
tion, in the elastic contact region of the neighboring spheres, to
be responsible for the observed GER effect. In Fig. 3 we show
a schematic picture of our model, consisting of two spherical
coated particles whose centers are aligned along the direction
of external electric field, with a (flat) deformed contact area.
The parameters of the model are stated in the caption.

The contact region is modeled by a 5–10 Å gap separating
the flattened surfaces of the two spheres, with the size of the
contact region determined by the Hertzian solution [20] of two
elastic spheres in contact, pushed together by a force F. The
final results of our model are insensitive to the exact separation
of the gap region, to be shown later. The crucial element of
our model is that in the contact region the surface dipoles
form two aligned layers, as shown in the right panel of Fig. 3,
in contrast to other surface areas where such a (saturation)
polarization configuration represents a higher energy state. The
aligned dipole layers give rise to an electrostatic force F holding
Fig. 3. Surface polarization layer model. The radius of the core is 25 nm and
the coating thickness is 5 nm. The gap between two flattened layers is 5–10 Å
and the thickness of the saturation polarization layers is 5 Å. The overlap of
two spheres is determined by the equilibrium of the electrostatic force and the
elastic force.

the two particles together. Hence the equilibrium contact state
is represented by the balance of the electrostatic force with the
elastic force. Perturbation from the equilibrium state can be in
the form of either shearing in the direction perpendicular to
the electric field, or pulling (or compression) along the electric
field direction. The shear stress or extensional stress at which
the two spheres irreversibly lose contact is denoted the yield
stress or tensile stress, respectively. They coincide with the
peak in the stress–strain relation (see below), beyond which
the stress decreases with increasing strain, indicating instability.
Below we first deduce the predictions from this surface
polarization model and compare them to the experiments. The
statistical mechanics of the aligned surface dipole layers, i.e.,
the energetics and entropy considerations, will be discussed
along with Monte Carlo simulations in Section 4.

3. Model predictions

Consider two identical spheres each with radius R (in actual
calculations R is taken to be 55 nm, in which 5 nm is the
thickness of the coating layer), aligned along the direction
of the external electric field. The total energy W consists of
two parts: electrostatic and elastic, i.e., W = Wes + Welas.
The equilibrium condition is given by ∂W/∂h = 0, i.e., a
force balance between the two components, where h is the
relative approach of the two spheres. The general expression
for electrostatic energy is given by

Wes = −
1

8π

∫
Vo

D · EdV −
1

4π

∫
Vs

[∫ E

0
D(E) · dE

]
dV, (2)

where Vo is the volume of dielectric materials besides that of
the surface (aligned) dipole layer, and Vs is the volume of the
surface layer. A separate treatment is needed for the latter due
to the nonlinear P–E relation in the surface layers (since the
polarization is saturated), which can be roughly approximated
by a two-segment function:

P =


|P0|

Ec
E if |Eext| ≤ E (ext)

c

P0, if |Eext| > E (ext)
c .

(3)
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Here Eext is the externally applied electric field, E (ext)
c denotes

the experimental threshold value for saturation polarization and
Ec the corresponding microscopic fields inside the layer. The
relation is linear when the applied macroscopic electric field is
below a threshold value; the polarization P becomes a constant
(saturated) P0 when the threshold value is exceeded.

Substitution of the two-segment P–E relation into the above
equation yields the final energy expression:

Wes = −
1

8π

∫
V

D · EdV −
1
2

H(|Eext| − E (ext)
c )

×

∫
Vs

P0 · (E − Ec)dV, (4)

where V = Vo + Vs is the total volume, and H(x) is the step-
function which vanishes for x < 0, and has value 1 for x > 0.

In numerical evaluation of the electrostatic energy, the
boundary condition is that there is a voltage difference between
two parallel planes (perpendicular to the external electric field)
bounding the two spheres. The voltage difference is given by
the applied electric field times 4R. There is an enhancement
factor for the local electric field in the contact region, which
can be evaluated numerically. By considering only two spheres,
our model essentially treats only one chain and neglects the
chain–chain interaction.

Calculation of the elastic energy follows that given by the
Hertzian solution [20] of two elastic spheres pressed together
by a (electrostatic) force F. By using continuum elasticity
theory and treating the core as having a negligible effect on the
deformation of the coating, one obtains

Welas = h5/2 2
5D

√
R/2 (5)

where 1/D is the deformation modulus, which is the only
adjustable parameter in our model. By applying the equilibrium
condition (force balance) as stated above, the value of h (and
hence the contact area) can be obtained in terms of other
given parameters of the problem. The value of the deformation
modulus is taken to be that which gives the yield stress (see
below) at E = 2000 V/mm which is in agreement with the
experimental data. Its value is

1
D

= 0.123 GPa. (6)

It should be noted that the deformation modulus is comparable
to that of liquid, i.e., ∼1/10–1/100 those of solids. Once
1/D is determined, its value is kept constant in consequent
calculations.

For the dispersed nanoparticles with coatings in GER fluids,
the elastic properties of the cores may have some effect. As the
core is harder than the coating, the contact area between two
dispersed particles will be slightly reduced.

3.1. Static yield stress

To calculate the static yield stress, the equilibrium
configuration is first calculated under an applied electric field.
For E = 2000 V/mm, it was found that h = 1.21 nm. When
Fig. 4. FEM model for GER fluids. The diameter of the core particle is 50 nm.
The thickness of the coating is 5 nm. The dielectric constants of the coating and
the core are both taken as 60 and that of silicon oil is 2. A very fine FEM mesh
is required in the contact region between the two spheres.

the two particles are sheared and thereby tilted, the total energy
is dependent on the tilt angle:

W (θ) = Wes(θ) + Welas(θ). (7)

The electrostatic energy can be calculated by direct numerical
integration, after solving the electrostatic equation (Laplace
equation) by using the finite element method (FEM). The elastic
energy can be calculated directly by using the expression

Welas(θ) =
2

5D

√
R/2[h(θ)]5/2, (8)

where h(θ) is the difference between 2R and the distance of
two centers of spheres at angle θ . With the geometric relation
shown in Fig. 4, it can be expressed as

h(θ) = 2R −
2R − h

cos θ
. (9)

At the detaching point, the angle θm = arccos(1−
h

2R ), h(θm) =

0.
The shear stress is defined as

1
V

∂W (θ)

∂θ
, (10)

and the yield stress is obtained at the detaching angle θm when
two spheres are separated:

Y =
1
V

∂W (θ)

∂θ

∣∣∣∣
θ=θm

. (11)

As seen in Fig. 5, the detachment point also turns out to be
the tip of the stress–strain curve, beyond which the system is
unstable. Thus by definition the stress at this point is indeed the
yield stress.

The static yield stress under different electric field values can
be evaluated following the same method as described above,
and the results are shown in Fig. 2 as the solid line. Excellent
agreement is seen.
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Fig. 5. Calculated static stress–strain (θ) relation at 2 kV/mm. The static yield
stress is the peak stress value, beyond which the stress decreases with increasing
strain, indicated by the dashed line for instability. There is a discontinuity in the
derivative at the yield point. At 2 kV/mm, the equilibrium elastic deformation
h is 1.2 nm. The gap width was fixed at 5 Å for all calculations in which the
spheres were in elastic contact.

3.2. Young modulus and tensile stress

To evaluate the Young modulus and tensile stress, we first
determine the equilibrium point at E = 1000 V/mm, which is
found to occur at h0 = 0.74 nm. The stress F/A is thus given
by

F

A
= −

1
A

∂W

∂h
, (12)

in which we take A = (2R)2
= 3600 nm2. The above

stress–strain relation is plotted in Fig. 6. At h = h0, the stress
F/A is noted to vanish as shown. Expansion of F/A around
h = h0 yields

F

A
= −

1
A

∂W

∂h
= −

1
A

[
∂2W

∂h2

∣∣∣∣
h=h0

(h − h0) + · · ·

]
. (13)

In the linear range, the Young modulus is obtained as

Y =
L

A

∂2W

∂h2

∣∣∣∣
h=h0

=
1
V

∂2W

∂(h/L)2

∣∣∣∣
h=h0

, (14)

where L = 2R. We obtain

Y =
L2

V

3
2D

√
R/2h1/2

0 = 10.3 MPa (15)

at 1000 V/mm of applied field. Here the volume is taken to be
V = (2R)3 in the calculation of the overall energy density.

The tensile stress is the stress at which two spheres become
detached, i.e., at h = 0. Our evaluation shows that

Yt = 85.3 kPa (16)

at 1000 V/mm. It is noted that the tensile strength is much
larger than the yield stress under the same applied field
(∼17 kPa).

Young modulus and tensile stress under different field can
be evaluated similarly. The results are plotted in Figs. 7 and 8,
respectively.
Fig. 6. Calculated stress–strain (h) relation at E = 1000 V/mm. The tensile
stress is the peak stress value when two spheres are pulled apart, i.e., at h = 0.

Fig. 7. Field dependence of Young modulus in the GER fluid.

Fig. 8. Field dependence of tensile stress in the GER fluid.

3.3. Size scaling of the GER effect

The size dependence of ER fluids is seldom addressed in
literature. In the conventional ER mechanism of linear induced
polarization, the ER effect increases with the size of the
particles as noted before [13]. However, the opposite trend was
observed in a recent experiment on GER fluids. Fig. 9 shows
a comparison of the measured yield stress for two samples
consisting of two different particle sizes. It is observed that the
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Fig. 9. TEM images of coated nanoparticles. In (a) the nanoparticles were
fabricated without Rb addition, and in (b) the nanoparticles were fabricated
with Rb addition to the core materials. A clear difference in size is seen, where
the size of the particles in inset (a) is almost twice that in inset (b).

(Rb-doped) GER fluids exhibit very strong yield stress — up to
250 kPa at 5 kV/mm. Thus particles about 1/2 the size led to a
doubling of the maximum attainable yield stress.

The size scaling behavior of the GER effect can be
understood on the basis of the proposed surface polarization
model, in which the ER effect originates from the two
saturated polarization layers at the contact region of two coated
nanoparticles. As the contact region may be regarded as a tiny
parallel-plate capacitor, its energy is approximately given by
EwA, where E denotes the (roughly constant) average energy
density inside the contact region, w the gap width, and A
the contact area. From numerical simulations, it is found that
A ∝ R2, where R is the radius of the coated particles. Hence if
we ignore the much smaller energy elsewhere, then the overall
energy density is proportional to 1/R. This is in reasonable
accord with the observed correlation between the yield stress,
proportional to the overall energy density, and the particle size.

3.4. Electrical current density

Under high electric field, especially the high local field in
the contact region, the molecular dipoles of urea can thermally
dissociate due to the reduced Coulomb energy barrier (from the
counter-ion), giving rise to free ions and hence charge carriers
that are responsible for the electrical current density observed in
GER fluids. To model the dissociation process, consider an ion
with charge q attracted to the counter-ion by Coulomb potential

V1(r) = −
q

r
, (17)

where r is the radial distance to the counter-ion. When an
electric field E is applied along the dipole direction, an
additional potential −Er is added, so the total potential is given
by

V2(r) = −
q

r
− Er. (18)

It is straightforward to show that the barrier is lowered by an
amount

1V = −2
√

q E (19)

due to the application of the electric field. This is the well-
known Poole–Frenkel effect [21]. The electric-field dependent
part of the thermal dissociation probability is given by
exp[−1V/kBT ], where kB is the Boltzmann factor and T
denotes temperature. The current density is obtained by Ohm’s
law:

J = σE. (20)

Here the conductivity σ = nqµ; q is the charge of carriers and
µ the mobility. The density of carriers, n, is the fastest varying
parameter in this case. Therefore the electric-field dependent
part of the carrier density varies as

n ∝ exp
(

−
1V

kBT

)
, (21)

or

ln J ∝ ln n ∝ −1V ∝
√

E . (22)

This behavior is indeed confirmed experimentally (shown in the
inset of Fig. 2).

3.5. Model parameter considerations

In the induced polarization model, the yield stress increases
with the ratio between the particle and fluid dielectric constants.
In particular, a theoretical upper bound [13] is obtained in the
limit |ε/ε f | → ∞.

Is there also a dielectric constant-dependent effect for the
GER fluids? Physically, the induced attractive electrostatic
forces between nanoparticles would increase with increased
effective dielectric constant of the coated particles, so the
neighboring spheres will press upon each other with a stronger
force and thereby increase the contact area, leading to enhanced
yield stress. The numerical results are shown in Fig. 10, in
which the dielectric constant of the particles (core and coating
assumed to have the same dielectric constant) is varied from 10
to 2000 and the dielectric constant of the fluid is kept constant
as 2. The trend shows an upper limit for the static yield stress
when the dielectric constant of the nanoparticles increases.

In another parameter consideration, the gap between two
aligned dipolar layers was slightly varied from 5 to 10 Å,
distances on the order of atomic separations. The numerical
results are shown in Fig. 11. It is seen that the static yield stress
is not very sensitive to the gap width between the two layers.
This behavior can be understood as follows. If the gap region is
considered to be a tiny parallel-plate capacitor, then the electric
field in the gap should be almost uniform (since the surface
charge density is a constant). Hence the interaction between the
two plates is constant, provided that the gap is smaller than the
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Fig. 10. Dielectric constant mismatch in GER fluids. In a coated particle with
a 50 nm diameter core and a 5 nm coating, the dielectric constants of the core
and the coating are taken as the same value, varying from 10 to 2000 (shown
by different curves). The 5 Å gap has ε f = 2.

Fig. 11. Static yield stress with different gap width between two saturation
layers.

size of the plates. This condition holds in our case, since the
gap varies from 5 to 10 Å while the radius of the contact area is
about 6 nm when E = 2 kV/mm. When the gap separation is
comparable to the size of the contact area, a noticeable variation
of yield stress is expected.

4. Statistical mechanics of surface aligned layers

In order to investigate the formation of the surface dipolar
layers from the statistical mechanic point of view, the contact
area of the urea coating are modeled by two cubic lattices
(8 × 8 × 8 each). A urea molecule is put on each lattice site and
is simplified as a dipole with a permanent moment (4.6 Debye),
the same as that for bulk urea. The dipoles in the outermost
layer, i.e., at the coating–core interface, are fixed in anti-parallel
pairs, simulating the locked state in bulk urea. The dipoles
in other layers can rotate freely as in the liquid state and the
dipole–dipole interaction energy is given by

Wi j =
pi p j

r3
i j

−
3(pi · ri j )(p j · ri j )

r5
i j

. (23)

At the innermost layers, corresponding to the coating–oil
interfaces, an additional “electrowetting” effect is proposed
which gives rise to perpendicularly-aligned dipoles on the same
layer. This is detailed below.

It has been observed in experiments that particle–oil wetting
plays a crucial role in the GER effect. Non-wetting can imply no
GER effect. Thus a synergistic effect between the particles and
the suspending oil exists and is responsible for the appearance
of the GER effect. We propose that the electrowetting effect
plays a role in the energetics of the aligned dipole layers, by
lowering the energy of the aligned dipoles as compared to the
usual anti-parallel alignment in the locked configuration (in
bulk urea, for example). It is known that the electrowetting
effect may be expressed by the Lippmann equation [22,23]:

γ = γ0 − cE2, (24)

where γ is the surface tension and E is the magnitude of the
local electric field. c is a small length scale measured in Å’s.
The electro-wetting effect is generally small when the local
electric field is weak. However, if the dipoles are aligned,
the local field can be enormous (on the order of 107 V/cm),
leading to a significant lowering of the surface energy. This
electrowetting effect would mean that (1) the dipoles are not
only favored to be aligned, but also to be perpendicular to
the layer, as otherwise the electric field would be weak in the
fluid region; (2) the effect remains the same if the dipoles
are reversed in their orientations; and (3) the effect would
counter the repulsive intra-layer interaction between parallel-
aligned dipoles in the same layer, acting in conjunction with
the attractive inter-layer interaction across the gap.

In mean-field form, the electrowetting effect may be
expressed as

Wi = −J
∑

j

pz
i pz

j 6=i . (25)

Here the superscript on p denotes the component of the dipole
perpendicular to the layer, and J is a positive parameter
whose microscopic origin will be explored below. Here we first
consider the necessary magnitude of J to realize the aligned
dipolar layers.

In order to account not only the energetics but also the
entropy effects, we have carried out Monte Carlo simulations
on the model. It was found that if J is assumed to be 0.4 eV,
with the lattice constant being the same as that in bulk urea,
i.e., a = 5 Å and the gap between two innermost layers being
5 Å, and at the room temperature and under a local electric
field 7 × 106 V/cm, the surface aligned dipole layers can
be stabilized, as seen in Fig. 12. For a weaker electrowetting
effect, i.e., J < 0.4 eV, the aligned dipole layers are not
stable. Here J = 0.4 eV corresponds to a value of c =

16 Å in Eq. (24), obtained by the difference of surface energy
densities on the contact layers (with and without the electric
field), divided by the square of local electric field (the threshold
value Ec = 0.7 × 107 V/cm, obtained numerically from an
E (ext)

c = 500 V/mm).
There can be two elements contributing to the electrowetting

effect. The first element is the hydrogen bonding interaction.
An illustration of the plausible hydrogen bonding network is
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Fig. 12. Monte Carlo simulation result shows the aligned dipolar layers. Here
we show mostly the inner layers in the gap region, i.e., the 8th and 9th layers.

Fig. 13. A schematic hydrogen bonding (indicated by the dotted lines) network
favoring the formation of parallel alignment of urea molecular dipoles. The urea
molecular dipole unit is indicated by the dashed line, with direction as shown.

shown in Fig. 13, where it is assumed that in the gap region
there can be some urea molecules, some water molecules,
plus the silicone oil molecules. They network together to give
rise to the favorable effect of parallel alignment of the urea
molecular dipoles. As each hydrogen bond is on the order of
0.1 eV, it can be seen that the proposed network can contribute
a considerable amount to the required J = 0.4 eV. The
second element is the −αE2 interaction energy between the
induced polarization of the molecules in the gap (α being the
polarizability) and the local electric field. That energy can also
be on the same order, provided the local electric field is on the
order of 107 V/cm. It is seen that the silicone oil, with the
presence of oxygen in its structure, can partly contribute to the
hydrogen bonding network. It is conjectured that the presence
of oxygen in silicone oil is a contributing factor to its synergistic
wetting of the coated nanoparticles.
5. Concluding remarks

We have proposed a surface polarization saturation model
for the GER effect, with predictions in excellent agreement with
the experiments. The statistical mechanical underpinnings of
the aligned dipolar layers were studied by using Monte Carlo
simulations, with elements of hydrogen bonding contributing
to the energetics favorable to the formation of such layers.
Shortcomings of the present approach include the neglect
of inter-chain interactions (as the model considers only two
particles in a single chain), as well as the lack of a more ab initio
justification for the hydrogen bonding model. These constitute
tasks to be further pursued.
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