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Three-dimensional metallic fractals and their photonic crystal characteristics
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We report photonic properties of subwavelength three-dimensional (3D) metallic H-shaped fractals. The
fractal structure supports localized resonances with relevant wavelength over ten times the sample size. Owing
to the anisotropy inherent to the fractal geometry, the resonances and their induced band gaps are polarization
dependent. The measured microwave transmission spectra agree well with simulations, and show the aniso-
tropic response to be well described by an effective dielectric tensor. Using the three-dimensional H fractal as
the basic unit, a microwave photonic crystal was fabricated, and its band-gap characteristics shown to display
unique features of hybridization between local resonances and Bragg scattering. A photonic crystal of 3D
fractals is an excellent microwave analog to an anisotropic electronic solid consisting of atoms or molecules

with localized discrete energy levels.
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I. INTRODUCTION

The optical properties of materials are related not only to
their crystal structures, but also to their atomic and molecular
constituents. In the Lorentz model, the response of atoms
and/or molecules to optical waves can be described in terms
of electrons harmonically bound to ions, where the resonant
frequencies correspond to the absorption peaks of the
material." Generally, an atom’s size is on the order of a few
angstroms, much smaller than the wavelength of visible
light, A~ thousands of angstroms. In exact analogy to elec-
tronic systems, photonic crystals> and metamaterials®* are
artificial structures relying on periodicity and local reso-
nances, respectively, for their unique characteristics. In par-
ticular, metamaterials owe their peculiar characteristics to
resonant structural units, consisting of either conducting
wires or split-ring resonators,® that display subwavelength
resonances similar to atoms and molecules, but at frequen-
cies that are artificially tunable.

Light or electromagnetic wave interaction with fractals is
an interesting topic because of the peculiar geometric scaling
invariance of the structure. There is an extensive literature on
optical properties of fractals formed from aggregation of me-
tallic particles that are usually random in character.>”” There
have been a similar abundance of studies on the electrical
properties of fractal-shaped electrodes or self-similar
circuits.>"10 Electromagnetic functionalities of fractal pat-
terns, such as Koch curves and Sierpinski gaskets, have been
intensely investigated, e.g., for their applications as diffrac-
tion plates or radio antennas.'!"'> Recently, electromagnetic
(EM) wave localization has also been reported in a three-
dimensional fractal structure.'!4

In this work we present a multiresonance metamaterial
structural unit in the form of a three-dimensional (3D) me-
tallic H-shaped fractal, operative in the microwave regime.
This represents a 3D version of the two-dimensional (2D) H
fractal.!>!® The additional spatial dimension means not only
that the relevant resonances are further subwavelength than
in the planar case, but also that there is a significantly richer
array of characteristics that may be utilized for the control
and manipulation of microwaves. After identifying the elec-
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tric and magnetic response of these 3D H fractals, we use
them to construct photonic crystals and study their photonic
characteristics. The photonic crystal made from these fractal
units offers perhaps the most complex band structure yet
observed in the microwave regime, combining the effects of
local resonances, Bragg scattering, and anisotropy. Numeri-
cal simulation results are shown to be in excellent agreement
with the experiment. In particular, our work is distinct from
most previous works®>~!¢ in its focus on the interaction of
fractal local resonances with Bragg scattering.

II. THREE-DIMENSIONAL H-SHAPED FRACTAL

The starting point of our 3D fractal unit is a line of length
a, defined as the first level of the structure, parallel to the z
axis. The (k+ 1)th-level structure, containing 2K lines, is con-
structed along the direction orthogonal to the plane formed
by the lines of the previous two levels, with the midpoint of
each line connected to the ends of the kth-level lines. The
length of the (k+1)th-level lines is scaled as a/29%0%3),
where the notation quo(m,n) denotes the quotient of integer
m divided by integer n. Hence the first nine levels have line
lengths a for levels 1-3, a/2 for levels 4-6, and a/4
for levels 7-9. The construction process is illustrated in
Fig. 1(a). The fractal dimension is given by D,
=log,, 8/1og;o(1/0.5)=3, where 0.5 is the scaling factor and
8 is the number of self-similar units generated after scaling.!”
This line structure therefore fills a 2a X 2a X 2a cube as the
number of levels, N, approaches infinity. It is interesting to
note that the projections of the 3D fractal along the three
orthogonal directions x, y, and z are the planar H fractals.
One such projection is shown in Fig. 1(b).

The experimental sample was a six-level 3D fractal with
the first-level line length =25 mm, made of metallic wires
with a diameter of 0.9 mm.'® A single unit is 4 X4 X4 ¢cm?
in size. In order to increase the sample cross section so as to
facilitate microwave measurements, a 7 X7 square lattice
comprising 49 3D fractal units was used, with a lattice con-
stant of 6 cm. Two identical horn antennas were connected
with a network analyzer to generate and receive electromag-
netic waves. The sample was placed between two antennas
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FIG. 1. (a) Iterative construction of the three-dimensional H
fractals. (b) One of the projections of the nine-level 3D H fractal is
exactly a six-level planar H fractal.

and the transmission spectra were detected at normal inci-
dence, for frequencies in the range 0.7—18 GHz. All trans-
mission data were normalized to the free space transmission
value.

III. TRANSMISSION MEASUREMENT

Since the 3D fractal is anisotropic, the transmissions
along three incident directions (x, y, and z) were measured.
For each direction, the EM wave was incident normally on
one face of the sample, with two polarizations measured by
rotating the horn antennas 90°. The measurement geometries
are schematically shown in Fig. 2(a) and the corresponding
results shown in Fig. 2(b). One can obtain a total of six
spectra for all incident directions and polarizations, but as
long as the incident electric field (E field) is oriented along
the same direction, the results are the same regardless of the
illuminated face. Hence only one spectrum is shown in Fig.
2(b) for every orientation of the incident E field. In order to
explain the experimental observations, the finite-difference
time-domain (FDTD) simulation was employed,'® with peri-
odic and perfect conductor boundary conditions. The simu-
lation results are superposed on the corresponding experi-
mental data as solid lines in Fig. 2(b). Good agreement
between experiment and theory can be seen. The six-level
fractal structure shows a total of six band gaps within the
measurement frequency range, each corresponding to a local
resonance (see below). Four bands have their wavelengths
larger than 6 cm, the lattice constant. In particular, the
lowest-frequency resonance occurs at the relevant wave-
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FIG. 2. (Color online) (a) Schematics of measuring the six-level
fractal under various microwave illuminations, incident directions,
and polarizations. E, is the electric vector of the incident wave and
k is the wave vector. The six-level fractal measures 4 X 4 X 4 cm?.
Of the six measurement geometries, every two cases with the same
incident polarization have the same spectra. (b) Transmission spec-
tra of a 7X7 square array of the six-level fractals at normal inci-
dence, for those cases as shown in (a). Open symbols denote the
experimental values and the solid lines are the corresponding simu-
lation results.

length of ~41 cm (at a frequency of 0.7 GHz), which is
more than ten times the edge length of the structure, indicat-
ing the subwavelength characteristic. Furthermore, the ap-
pearance of these transmission stop bands is dependent
strongly on the polarization of the incoming EM radiation,
which is the result of the geometrical anisotropy. We also
measured the spectra at oblique incidence, four cases of
which are shown in Fig. 3. For TE waves [shown in Fig.
3(a)], the spectra are nearly identical with each other because
E, is parallel to the first level line. However, for TM waves
[shown in Fig. 3(b)], two new dips become apparent at lower
frequencies as the incident angle increases, and their posi-
tions correspond to the 0.7 and 3.0 GHz stop bands in Fig. 2.
This is due to the fact that E, has more and more compo-
nents projected along the first-level line as the wave vector k
is rotated. Similar results for other oblique incidence cases
were observed, and they imply that the six stop bands are the
basic responses of the fractal interacting with EM waves.
Photonic responses from arbitrary incident angles may be
expressed as linear combinations of these six basic spectra.

The simulations reveal that the formation of the stop
bands originates from a series of resonances intrinsic to the
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FIG. 3. (Color online) Transmission spectra of the square array under oblique incidence. The incidence geometries are illustrated in the
insets. The incidence angles are 0°, 15°, 30°, and 45°. (a) The case of TE waves where the incident wave vector k was rotated within the
plane perpendicular to the first level line. (b) The case of TM waves where k was rotated within the plane defined by the first level line and

the E, vector.

fractal structure, and these resonances are characterized by
distinct current distributions. In Fig. 4 we plot the calculated
surface current distributions on the fractal structure for every
stop band frequency.?” It is seen that every resonance leads to
a specific current distribution with intensity maximum lo-
cated on some specific level. For the lowest-frequency reso-
nance, defined as the fundamental mode, the current maxi-
mum appears only on the first-level line. As the frequency
increases, the resonant current distribution shifts to higher
levels. For the highest one, the maximum is on the sixth-
level lines.

e
3a

3a+—+ -
2
quo(N,3) 3 rem(N,3) .

a a

= X ot X comm =g dat oo+
= 2J-1 par 2quo(N,3) 2
3a

3a+—+ -
2
\

where i and j are positive integers, the notation rem(m,n)
means the remainder of integer m divided by n, and the
summation should be neglected when the upper limit is less
than the lower one. If N=1, then /,=a. For a dipole (i.e., just
a line of length [,), the resonant wavelength of the funda-
mental mode \;=2/,.>! When the lines of higher levels are
added, as shown in Fig. 1(a), the path becomes longer (see

IV. SUBWAVELENGTH CHARACTERISTICS

We are particularly interested in the subwavelength fea-
ture of the fundamental mode, where the fractal structure is
smaller than one-tenth of the relevant wavelength. The frac-
tal includes a maximum conducting path / extending from
one corner of the structure along the body diagonal to the
opposite corner, which is longer than the edge length of the
fractal body. For a 3D H-shaped fractal with N total levels,
the maximal path length is given by

3a 3a . .
+F=6a—F, if N=3i,
3¢ a Sa . .
+F+E a ?, if N=3i+1, (1)
3a a a a . .
+F+E+§=6Q—F, if N=3i+2,

the inset in Fig. 5) and the resonance wavelength is expected
to increase. However, for the fractal this increase is faster
than linear. We have simulated the values of \y (the funda-
mental mode) while N increases from 1 to 9, and depict the
variation of the resonance wavelength versus the conducting
path in Fig. 5, where both quantities are normalized with
respect to \; and [,, respectively. Clearly the variation (solid
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FIG. 4. (Color online) Simulated surface current distributions at
the six band-gap frequencies denoted in the figure. These frequency
values correspond to the minimum transmittance positions of the
band gaps in the simulation.

squares) for the 3D fractal case is nonlinear and, as the levels
increase, rises rapidly above the linear relationship N=21
that is relevant to the dipole case. The upward deviation from
the dipole case, as well as the increasing ratio of Ay to [y,
imply that the subwavelength feature of the fractal structure
is more than just an increase in path length. The influence of
higher levels (i.e., finer structure) on the fundamental reso-
nance does play an important role. In other words, while the
dominant (resonant) current distribution is centered at the
level-1 line, the small tail of currents flowing into the higher-
level lines actually has a material effect in lowering the fun-
damental resonance frequency f,. From the perspective of
equivalent circuit modeling, the resonant frequency is given
by 2mfy=1/JLC. The higher-level structures can also con-
tribute to the capacitance C and inductance L of the equiva-
lent circuit.’! Since the higher-level structures of a 3D H
fractal are ramified and contain many curled lines within a
limited spatial region, they can efficiently increase the ca-
pacitance C and inductance L for the entire structure.

For comparison, we also plot in Fig. 5 the same resonance
wavelength variation (solid circles) for a planar H fractal
with the levels increasing from 1 to 9. Despite rising faster
than in the 3D case, the curve for the planar H fractal case
stops at a lower wavelength value, a direct consequence of
the 2D geometry. This is in spite of the fact that a nine-level
planar H fractal (five orders of scale a, a/2, a/4, a/8, and
a/16) has a larger edge length than its nine-level 3D coun-
terpart. For the same edge length, in the planar case the level
can increase up to 6 only [exactly the planar projection of the
nine-level 3D H fractal; see Fig. 1(b)], and correspondingly
Iy/1; stops at the value of 3.5. Hence it is seen that, for the
same sample size, the 3D H fractal can be much more sub-
wavelength than the 2D case.

There are other 3D space-filling curves, such as the Hil-
bert curve, which has the same fractal dimension as the H
fractal. It was found that the 3D Hilbert curve of few levels
can support very far subwavelength EM resonances owing to
its efficient space-filling property.'?> A detailed comparison
between these two fractals, in particular with regard to the
(saturated or divergent) behavior in the limit of Ay at N
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FIG. 5. (Color online) Variation of the resonance wavelength of
the fundamental mode, Ay, versus the maximal conducting path Iy
in an H fractal structure as the number of levels, N, is increased.
The line with circles is for the planar H fractal and the line with
squares is for the 3D H fractal. Both the resonance wavelength and
the path length have been normalized with respect to the values of
the first-level structure (25 mm). The solid squares and circles de-
note the simulated values for the 3D and planar H fractals, respec-
tively. The solid line indicates the dipole relationship A=2/. Inset:
Plot of Iy vs N (from 1 to 9) for the 3D (solid squares) and planar
(solid circles) H fractals. When N— o, [y;— 6a for the 3D case and
4a for the planar case.

—0, should be interesting but is out of the scope of this
paper.

V. EFFECTIVE DIELECTRIC RESPONSE

From Fig. 4 we see the distribution of the resonant current
looks like the letter H, owing to the H-shaped symmetry of
the 3D fractal. Since the excitation of magnetic resonances in
metamaterials requires a loop (or partial loop) distribution of
the current in accordance with Faraday’s law,?? we conclude
that the present structure does not support magnetic excita-
tions, at least in the long-wavelength limit. Thus, these reso-
nances may be characterized by an effective electric polariz-
ability tensor

a 0 O
a=|0 a 0 |, (2)
0 0 «

Z

and the square lattice of fractals may be modeled by a ho-
mogeneous plate (assuming the same thickness) with an ef-
fective permittivity tensor

e, 00
g=(0 g 0], (3)
0 0 e,

where ¢, &y, and g, are dielectric functions with Lorentzian
profiles.”? By fitting the transmission spectra, we obtain the
forms of the three elements of &:
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FIG. 6. (Color online) (a) Schematic representation of the 5X 5 X5 photonic crystal of the six-level 3D fractals where each fractal unit
is represented by a small cube with effective dielectric function given by Egs. (3) and (4). The lattice constant for the simple cubic array is
p=6 cm and the side length for the small cube is 4 cm. (b), (c), (d) Band structures (left) and transmission spectra measured (center) and
simulated (right) at normal incidence for E, aligned along the z, x, and y axes, respectively. K represents the wave vector along the incident
direction. Those transmission values greater than 1 are due to wave diffraction and finite-size effects of the sample. The arrows, located
beside the band diagrams and denoted L, B, and H, are to label the position of the local resonance, Bragg scattering, and their hybrid effect,

respectively.

Codo, 04280
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where f denotes the frequency (in GHz), and the damping
has been set to zero (since at microwave frequencies the
metallic dissipation is negligible). The applicability of the
expressions degrades at higher frequencies, where the per-
mittivity is seen to be less than 1. This is because the effec-
tive medium model works accurately only at low frequen-
cies, where diffraction effects (from the local microstructures
of the fractals) are absent. In addition, it is noted that the
numerators in the Lorentzian expressions generally increase
with increasing resonance frequency. This is because the
number of lines supporting a specific local resonance in-
creases with increasing resonance frequency (see Fig. 4).
Hence there can be stronger coupling among the higher-
frequency resonances, leading to a larger bandwidth. For ex-
ample, in Fig. 2 the splits seen in the transmission dips at
higher frequencies can be attributed to the coupling interac-

tion. That directly corresponds to a larger numerator in the
Lorentzian profile. Further investigations would be needed to
clarify whether there is a scaling relation between the nu-
merator values and resonance frequencies.

VI. PHOTONIC CRYSTAL OF FRACTALS

When fractal units are arrayed periodically, the transmis-
sion spectrum displays not only the local resonances but also
the Bragg scattering characteristics. Experimentally, we have
fabricated a 5X5X 5 array of 3D fractals, arranged into a
simple cubic lattice with lattice constant of 6 cm and sup-
ported by foam, with a dielectric constant ~1. This is sche-
matically illustrated in Fig. 6(a). All fractal units are oriented
identically. The normally incident transmissions were mea-
sured for EM waves illuminating different surfaces of the
cube with two different polarizations. The measured spectra,
within the frequency range of 0.5 GHz to 10.0 GHz, are
plotted in Figs. 6(b)-6(d). Just as in Fig. 2, only one spec-
trum is shown for every incident polarization direction, since
the results are almost identical for different illumination sur-
faces.

We use the FDTD approach to simulate the transmission
spectra of a 5X5X5 photonic fractal crystal. For simplifi-
cation, within each unit cell (6 X6 X6 cm?) a homogeneous
cube (4X4X4 cm?) with the dispersive characteristics as
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FIG. 7. (a) The same band structure as in Fig. 6(b), magnified
within the frequency range 2.0—-3.4 GHz. (b) The same band struc-
ture as in (a), but further magnified for the frequency range
2.60—2.86 GHz. The plurality of the folded structure is evident.
This is a direct consequence of the very large dispersion of the
fractal effective dielectric constant. The lattice constant p=6 cm.

given by Eq. (4) is used to stand for the real fractal. An
incident pulse with a broad frequency spectrum is normally
incident on the 5 X5 X5 crystal array. The transmitted field
is recorded behind the crystal. Perfect matched layer absorp-
tion boundary conditions are implemented. The simulated
results are shown to the right of the measured transmission
curves in Figs. 6(b)-6(d). The band structures of these effec-
tive dispersion crystals are also calculated by the finite-
element method, using the commercial software COMSOL.
Periodic boundary conditions are assumed, and the results
are shown to the left of the measured transmission curves in
Figs. 6(b)-6(d).

From the band diagrams and the spectra, we see that local
resonances (the atomic form factor), Bragg scattering (the
structure factor), and their hybridizations (when the relevant
frequencies of the two are close to each other) can all con-
tribute to the transmission dips. We label these three effects
respectively by L, B, and H and point out, with arrows in the
band-structure diagrams, the positions where they occur. We
note that Bragg scatterings happen around 2.5 and 5 GHz
(when the lattice constant is 6 cm), where small dips are
observed in the transmission spectra. The dips from the
Bragg scattering are small, since the gap exists only in the
incident direction and hence does not constitute an absolute
(or omnidirectional) band gap. Waves can therefore be trans-
mitted through directions other than the incident direction
and collected by the receiving horn. For the lowest three
resonances, the characteristic of the band gaps caused by the
local resonances is obvious in the band-structure diagrams,
as indicated by the three L arrows.

When the frequency of the local resonance, f;, is not well
separated from that of Bragg scattering, hybridization of the
two occurs. There can be two types of hybridization, depend-
ing on whether the frequency is in the (large) positive dielec-
tric constant side of the local resonance frequency [f<f7,
denoted H1 in Figs. 6(c) and 6(d)], or in the negative dielec-
tric constant side (f> f;, denoted H2). For the H1 type, the
dispersion curve of the small cube, 27f=cK/ Ve (K being the
wave vector and ¢ the speed of light in vacuum), becomes
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FIG. 8. (Color online) Measured transmission spectra of a 5
X5 X5 photonic crystal of the six-level 3D fractal structure, whose
orientations are dispersed in three orthogonal directions, under vari-
ous illumination conditions. (a) Microwaves were normally incident
on three different faces of the array. (b) For one face, the polariza-
tion of the incident wave was changed. For the other faces, similar
spectra were obtained and hence not shown. (¢) For one face and S
polarization, the incident angle was changed from 0° to 15°, 30°,
and 45°. For other polarizations and other faces, the spectra are the
same and hence not shown. (d) The waves were incident from the
[111] directions. Only two spectra are shown; the measurements for
the two other diagonal directions produced the same results and
hence are not shown. The arrows mark the three absolute band gaps.
Transmission values greater than unity are due to diffraction and
finite-size effects.

flatter and flatter as the frequency approaches the resonance
frequency (a singularity in the dielectric constant) from the
(large) positive dielectric constant side. At the same time,
because of the lattice periodicity, the flat f(K) curve would
fold many times within the Brillouin zone, giving rise to a
series of approximately parallel and closely separated
branches. This can be seen clearly in Fig. 7, which gives the
magnified band structure of the H1 regime seen in Fig. 6(b),
in the regime from 2.0 to 3.4 GHz. These states are difficult
to excite, owing to the very narrow resonance width, and so
appear as stop bands for the measured transmission spectra,
within which there can be a few sharp peaks near the band
edges (see the simulated spectra). For the H2 type, there
exist some well-separated bands within the frequency region
f>f1 where the dielectric constant of the small cube is nega-
tive, as indicated by the H2 arrows in Figs. 6(b) and 6(c). A
negative dielectric constant implies exponentially decaying
waves and would therefore prohibit the existence of photonic
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states inside the bulk material. However, since only ~30%
of the photonic crystal volume is occupied by the cubes,
energy bands are allowed within the frequency regime of
negative permittivity, formed by strong Bragg scattering.?*
These discrete energy bands can also give rise to transmis-
sion peaks inside the band-gap frequency, as evidenced by
the H2 arrow in Fig. 6(b) (around 3 GHz).

Thus, treating the fractal as a unit with an associated ef-
fective permittivity tensor can yield good agreement between
theory and experiment. Hybridization between the local reso-
nances of the basic structural unit and lattice periodicity is
seen to give rise to some fairly unusual characteristics.>*-2°

Since the fractal units are anisotropic, we have also stud-
ied the effect of orienting the fractal units along different
directions, by tuning the orientations of each unit by 90°
relative to its neighbors, so that every orientation within the
finite-sized sample has almost equal representation along the
three orthogonal directions [100], [010], and [001]. The mea-
sured transmission spectra are shown in Fig. 8. Three band
gaps are identified which are independent of the incident
direction, angle, and polarization of the waves. They are
hence absolute band gaps. A particularly striking character-
istic of these band gaps is the flat band edges, owing to the
local resonance origin of the gaps. By comparing the band
gap positions in Figs. 2 and 8, the three absolute band gaps
are seen to originate from the three lowest resonances of the
fractal unit. While each fractal unit is anisotropic, the array
is now isotropic in the long-wavelength regime. The reason
lies in the subwavelength feature of localized EM reso-
nances. Inside the cubic array, three fractal units oriented in
three different direction can be regarded as an isotropic
“superunit” which is still smaller than the relevant wave-
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length and hence below the diffraction limit. Yet they simul-
taneously display the three lowest resonances. Therefore, the
array or the collection of such superunits appears isotropic at
lower frequencies, with three absolute band gaps which
originate from localized resonances.

VII. CONCLUDING REMARKS

By fabricating a metallic 3D H fractal wire structure and
measuring its transmittance, we show that the 3D fractal dis-
plays subwavelength resonances that are polarization and
incident-angle dependent. A photonic crystal composed of
such fractal units was made; it displays features in excellent
agreement with those predicted by using the anisotropic ef-
fective dielectric function. With the help of band-structure
calculations, the hybridization effect resulting from the
strong interaction between local resonances, inherent to the
fractal unit, and Bragg scattering is detailed. We also show
the creation of absolute band gaps by means of random ori-
entation of the fractal units. Possible applications include
using the 3D fractal in subwavelength antenna design, a sub-
wavelength resonant cavity using an inverted 3D fractal
structure, and wave filtering, guiding, and slowing by a pho-
tonic crystal made of fractal units.
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