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Thermal coherence properties of topological insulator slabs in time-reversal
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We first develop a general Green’s-function method for the slab geometry, which can handle quite complex
conversions between the different polarized radiation modes. Then by using the method, we study the near field
thermal coherence properties of a slab of Z2 topological insulator (TI) with a finite thickness. Under a strong
enough external magnetic field, the gapless helical Dirac fermions on the TI surfaces can acquire an energy gap
larger than the photon energy of the radiation field at the Dirac point. This gapped surface states can couple
strongly with the waveguide modes in the bulk of the TI slab, which thus induces an electromagnetic resonance.
Exactly due to the resonance, the coherence properties of the thermal radiation field can be modified dramatically.
For Z2 topological insulators, the parameter regime with the surface Hall conductivity half integer quantized
is unique. We demonstrated that within the parameter regime, for a TI slab of a proper thickness, the thermal
radiation energy density can be enhanced very much, and the coherence length of the thermal radiation field can
be as long as twice that of SiC.
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I. INTRODUCTION

It is well known that the near field thermal radiation is quite
different from the thermal energy transfer in the far field.1–7

These differences can be viewed as a consequence of the
improved coherence properties8 of the radiative field in the
near field. Due to its various potential applications, including
imaging, lighting, and heat-to-electrical conversion,9–11 the
manipulation of thermal radiation field has attracted much
attention in recent studies. As it has been shown, the coherence
properties of the thermal radiation in artificial structures such
as microcavities12 and photonic crystals13–15 can be quite
different from that of a black body. In particular, for systems
supporting the electromagnetic surface modes, such as the
noble metals and SiC,1,2 long-range spatial coherence of
thermal radiation field can be established, and the improved
spatial coherence can cause directional thermal emission3 and
enhance radiative heat transfer.16–18

On the other hand, topological insulators19–22 are bulk
insulators which have gapless topologically protected surface
states. However, in the presence of a time-reversal breaking
(TRB) perturbation the surface state of a Z2 topological
insulator (TI) acquires an energy gap. This gapped surface state
can lead to the half integer quantized surface Hall conductivity
in response to an electromagnetic field of frequency ω,23,24

when h̄ω is much smaller than the surface gap �. The
gapped surface state is the origin of many interesting effects
proposed recently, such as the possibility of inducing magnetic
monopoles,25 the tunable Casimir effect,26 and the giant
magneto-optical Kerr effect.27

In this paper, we first develop a general Green’s-function
method for the slab geometry regardless of how complex the
scattering processes are. Then, by using this method, we study
the effects of the surface states on the coherence properties
of thermal radiation field from a Z2 TI slab. The schematic
configuration of the system under consideration is shown
in Fig. 1(a). As the external magnetic field (B) is small,

the surface gap � (� ∝ B) of the surface states is smaller
than the photon energy of the radiation field (h̄ω). Thus, the
electrons in the lower surface band can be excited to the upper
one by thermal radiation, which results in the nonvanishing
dissipative surface conductivities σR

xx (real part of surface
longitudinal conductivity) and σ I

xy (imaginary part of surface
Hall conductivity). In this interband transition regime, the
coupling between the surface states and the waveguide modes
in the bulk of the TI slab is weak, so the spatial coherence of
thermal radiation field does not deviate much from that of a
dielectric slab. However, with the increasing external magnetic
field, the TI surface states become gapped (2� > h̄ω), which
causes the vanishing of the dissipative surface conductivities
σR

xx and σ I
xy . Under the situation, the coupling between the

surface states and the waveguide modes can induce a novel
resonance, which indicates a much stronger coupling between
them. Importantly, due to the resonance, the spatial coherence
of thermal radiation field is dramatically modified from that
of a dielectric slab. Moreover, the thermal radiation energy
density is found to be enhanced significantly. These illustrate
that when the gapped surface states couple strongly with the
waveguide modes, more random incoherent thermal energy
can be converted into coherent radiation energy. As a specified
example, we demonstrated that for a TI slab of a proper
thickness both the coherence length and the thermal radiation
energy density are dramatically enhanced, when the surface
Hall conductivity is half integer quantized. Remarkably, the
coherence length of the x component of the radiation field is
found to be as long as twice that for SiC.

The paper is organized as follows. In Sec. II, we describe
the model of the surface states of a Z2 topological insulator
and briefly outline the Green’s-function formulism to describe
the electromagnetic scattering in a slab including the complex
mode conversions at the interfaces. In Sec. III, we study
the coherence properties of TI slabs and demonstrate the
great enhancement of thermal coherence properties due to the
gapped surface states. In Sec. IV, we compare our results
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FIG. 1. (Color online) (a) Left panel: The schematic configuration
of a TI slab under a magnetic field with the associated coordinate: the
origin of the coordinate is on the upper TI/vacuum interface. Right
panel: Scattering of thermal radiation fields at the TI surfaces. The
black (orange) thick arrow denotes the TE (TM) thermal radiation
modes generated from a random current source (the red dot in figure)
in a TI slab, and the black (orange) thin arrows denote the scattered
TE (TM) modes. (b) The mode expansion scheme for solving the
scattering problem. The red dot line indicates the source plane,
the pink (violet) arrows indicate the TE (TM) modes generated by the
source plane, the black (gray) arrows denote the TE (TM) modes in
the bulk of the TI slab, and the blue (sky-blue) arrow presents the TE
(TM) modes in vacuum. The source plane is obtained from random
current sources by Fourier transformation (for details see the text
or Ref. 28).

with those of the system supporting surface modes (i.e., SiC).
Finally, the conclusion remarks are provided in Sec. V.

II. MODEL AND METHODOLOGY

In this section, we will first present the model of the
surface states of a topological insulator. Then we will discuss
the cross-spectral density tensor, which directly relates to
the coherence properties of the radiation field. The mode
conversion between the transversal electric (TE) mode (with
the electric field parallel to the TI surfaces) and the transversal
magnetic modes (with the magnetic field parallel to the TI
surfaces) on the TI surfaces makes the scattering of radiation
fields in the system very complex. To solve the problem,
we extended the Green’s-function method28 by using the
mode expansion scheme so that we obtained a quite general
expression of the Green’s function for the slab geometry
regardless of how complex the scattering processes are.

A. Model of the surface states of a topological insulator

The effective Hamiltonian describing the surface states
of a Z2 topological insulator under a time-reversal breaking

external field can be given by29,30

H = vF (kxσy − kyσx) + �σz, (1)

where the first term describes the gapless surface states, and
� is the surface gap due to the external field and relates to
the external field as � = gsμBB/2. In the above, vF is the
Fermi velocity, kx and ky are in-plane momentum components
of surface electrons, σx , σy , and σz are Pauli matrices, gs is
the Lande factor of the Dirac fermions, and μB is the Bohr
magneton.

According to the effective Hamiltonian, the energy spectra

is given by E±(�k) = ±
√

v2
F (k2

x + k2
y) + �2, which indicates

that the external magnetic field opens an energy gap � =
gsμBB/2 at the Dirac point. The corresponding eigenstates
are given by

|+,�k〉 =
(

cos β

2

sin β

2 exp(iθ�k)

)
, |−,�k〉 =

(
sin β

2

− cos β

2 exp(iθ�k)

)
,

(2)

where β is defined as cos β = �√
v2

F (k2
x+k2

y )+�2
, and tan θ =

−kx/ky .
To describe the response of the surface states to the external

electromagnetic field, we use the Kubo’s formula to calculate
the optical conductivity:31,32

σαβ(�q,ω) = ie2v2
F

4π2

∑
�k,λ,λ′

(
∂H
∂kα

)
λ,λ′

(
∂H
∂kβ

)
λ′,λ

× nF (ε�k,λ′ ) − nF (ε�k−�q,λ)

(ω + ε�k,λ′ − ε�k−�q,λ)(ε�k,λ′ − ε�k−�q,λ)
, (3)

where λ and λ′ denote the band index, nF is the Dirac-Fermi
distribution function, and ( ∂H

∂kα
)λ,λ′ is the expectation value of

the α-component velocity operator.
After the straightforward evaluation of (3), the longitudinal

and Hall conductivity in the unit of e2/h̄ are given by

σR
xx = [1/16 + �2/(4ω2)]�[ω − 2 max(�,μ)],

σ I
xx = 1/(2πω){nF (�)� + kBT ln[F (�)2 + 1]}

+ 1/(8π )

{
2
�2

ω

1

max(�,μ)
+ [1 + 4(�/ω)2]f (ω)/2

}
,

σxy = i�/(4ω)�[ω − 2 max(�,μ)] − �/(4πω)f (ω), (4)

where f (ω) = − ln[ |ω+2 max(�,μ)|
|ω−2 max(�,μ)| ], F (�) = exp[−(� − μ)/

(2kBT )], nF (�) = 1
1+exp[(�−μ)/(kBT )] , �[ω − 2 max(�,μ)] is

the step function, and μ is the chemical potential relative to
the Dirac point. The ω = 0 and � = 0 limits of our results in
(4) agree with the previous results of the Dirac model.27,33,34

B. Extended Green’s-function method
and the cross-spectral density tensor

The coherence properties of the thermal radiation field is
characterized by the cross-spectral density tensor, which is
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the ensemble average of the radiation fields at two different
locations:1,2,6

W(�r1,�r2,ω) = 〈 �E( �r1,ω) ⊗ �E∗( �r2,ω)〉, (5)

where �E(�ri,ω) is the electric field of thermal radiation at
the position �ri , 〈〉 indicates the ensemble average, and ∗
denotes complex conjugate. W can be written explicitly in its
components as Wαβ = 〈EαE∗

β〉. By its definition, W describes
how the radiation fields at two different spatial points correlate.
Especially, the spatial coherence of the α-component thermal
radiation field is described by the variation of Wαα versus the
distance between the two field points |�r1 − �r2|.

On the other hand, the radiation field can relate to the
random current sources �J through the Green’s function as
�E = iμ0ω

∫
V

G · �J , where μ0 is the permeability in vacuum.
Moreover, the random current should fulfill fluctuation-
dissipation theorem:35

〈 �J ( �r1,ω) ⊗ �J ∗( �r2,ω)〉
= 4πωε0ε

′′(ω)O(ω,T )O (ω,T ) δ3 ( �r1 − �r2) I , (6)

where I is the unit tensor, ε0 is the permittivity (permeability)
in vacuum, ε′′(ω) is the imaginary part of relative permittivity,
O(ω,T ) gives the mean energy of a quantum oscillator at
temperature T . By using the above two facts and performing
Fourier transformation, the cross-spectral density tensor can be
written in a very general form in terms of the Green’s function
in momentum space as

W(�r1,�r2,ω) = W( �R1, �R2,z,ω)

= 4πω3μ2
0ε0ε

′′(ω)O(ω,T )
∫ h

0
dz′

∫ ∞

−∞

d2κ

4π2

× ei�κ·( �R1− �R2)g(�κ,z,z′,ω)g†(�κ,z,z′,ω). (7)

The Green’s function g contains the information of the
scattering of the radiation field generated by the random
current sources. For a TI slab, the introduction of Hall surface
states is crucial and brings the mode conversions at the
TI surfaces. To take the complex scattering processes into
account, we follow the mode expansion scheme to obtain a very
general form of the Green’s function for the slab geometry.

For the slab geometry (see Fig. 2), the electromagnetic field
in each region can be expanded into the eigenfunctions of the
Maxwell’s equations. The eigenmodes in the bulk of TI slab
(region II) should be identical to those in a dielectric slab. Here
we have to account the effects of random current sources in
the systems. By using the following form:28

�J (�r) =
∫ h

0
dz0

∫
d�κ
4π2

δ (z − z0) �J�κ exp(i�κ · �R), (8)

the random sources can be converted to plane sources, which
would benefit the later mode expansions. Here we have
assumed the thickness of the slab is h. Therefore, in terms of
the transversal electric (TE) modes and transversal magnetic
(TM) modes the electric and the magnetic fields in region II
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FIG. 2. (Color online) (a) Positions of the resonance induced by
the coupling of the surface states and the waveguide modes on the h −
� plane: only when h and � fulfill the relation presented by the curve
can the resonance can be induced. (b) Plot of the ratio Re as a function
of h and �: Re depicts the ratio of the TM and TE modes in the
radiation field. Here the white curve is to denote the positions of the
resonances within the thickness regime. (c) Re versus � for a TI slab
of a thickness h = 0.116λmax/2 [highlighted by pink dash line in (b)].

should be written as

�EII (�,�κ)

= [ �Es,g,+ exp(−ikz,TIz0) + �Ep,g,+ exp(−ikz,TIz0)]

×�(z0 − z) exp(i�κ · �R)

+ [ �Es,b,+ + �Ep,b,+ + �Es,b,− + �Ep,b,−] exp(i�κ · �R)

+ [ �Es,g,− exp(ikz,TIz0) + �Ep,g,− exp(ikz,TIz0)]

×�(z0 − z) exp(i�κ · �R) + �Eδ(z − z0) exp(i�κ · �R), (9)

�HII (�,�κ)

= [ �Hs,g,+ exp(−ikz,TIz0) + �Hp,g,+ exp(−ikz,TIz0)]

×�(z0 − z) exp(i�κ · �R)

+ [ �Hs,b,+ + �Hp,b,+ + �Hs,b,− + �Hp,b,−] exp(i�κ · �R)

+ [ �Hs,g,− exp(ikz,TIz0) + �Hp,g,− exp(ikz,TIz0)]

×�(z0 − z) exp(i�κ · �R) + μ�Bδ(z − z0) exp(i�κ · �R), (10)

205424-3



XIAO, LI, LAW, HOU, CHAN, AND WEN PHYSICAL REVIEW B 87, 205424 (2013)

where � = ω/c is the reduced angular frequency, μ is the
relative permeability of the slab, �Es,g,± is the electric field
of the upward (downward) propagating TE radiation modes
generated from the source plane (denoted by the red line
shown in Fig. 2), �Ep,g,± is the electric field of the upward
(downward) propagating TM radiation modes generated from
the source plane, �Es(p),b,+ is the electric field of the TE (TM)
modes propagating from the lower surface of the slab to the
upper one, and �Es(p),g,− is the electric field of the TE (TM)
radiation modes propagating from the upper surface of the slab
to the lower one, and �Hs,g,±, �Hp,g,±, �Hs,b,±, and �Hp,g,± are
the corresponding magnetic fields. The explicit form of these
quantities are presented below:

�Es,g(b),± = Es,g(b),± exp(±ikz,TIz)ŝ, (11a)

�Ep,g(b),± = Ep,g(b),± exp(±ikz,TIz)p̂±, (11b)

�Hs,g(b),± =
√

ε

μ
Es,g(b),± exp(±ikz,TIz)ŝ, (11c)

�Hp,g(b),± = −
√

ε

μ
Ep,g(b),± exp(±ikz,TIz)p̂±. (11d)

Here ŝ is the unit vector of TE modes for the given �κ and � ,
and p̂± are the unit vectors of TM modes propagating upward
(downward). Following the similar scheme, the radiation field
in regions I and III can be written as

�EI (�,�κ) = (Es,−ŝ + Ep,−p̂−) exp(i�κ · �R) exp(−ikz,Iz),

(12a)

�HI (�,�κ) = (Ep,−ŝ − Es,−p̂−) exp(i�κ · �R) exp(−ikz,Iz),

(12b)

�EIII (�,�κ) = (Es,+ŝ + Ep,+p̂+) exp(i�κ · �R) exp(ikz,IIIz),

(12c)

�HIII (�,�κ) = (Ep,+ŝ − Es,+p̂+) exp(i�κ · �R) exp(ikz,IIIz),

(12d)

where Ep,− is the amplitude of TM modes in region I, Es,− is
the amplitude of TE modes in region I, Ep,+ is the amplitude
of TM modes in region III, and Es,+ is the amplitude of TE
modes in region III.

As the radiation field scatters on the surfaces of the TI slab,
the current bounding on the surface would be generated. For
a TE (TM) mode with the given � and κ , the corresponding
current is given by

j I,II
s ŝ = σxx

( �ET
s,b,+ + �ET

s,b,− + �ET
s,g,− exp(ikz,TIz0)

) + σxyẑ × ( �ET
p,b,+ + �ET

p,b,− + �ET
p,g,− exp(ikz,TIz0)

)
, (13a)

j I,II
p p̂+ = σxx

( �ET
p,b,+ + �ET

p,b,− + �ET
p,g,− exp(ikz,TIz0)

) + σxy ẑ × ( �ET
s,b,+ + �ET

s,b,− + �ET
s,g,− exp(ikz,TIz0)

)
, (13b)

j II,III
s ŝ = σxx

( �ET
s,b,+ + �ET

s,b,− + �ET
s,g,+ exp(−ikz,TIz0)

) + σxy ẑ × ( �ET
p,b,+ + �ET

p,b,− + �ET
p,g,+ exp(−ikz,TIz0)

)
, (13c)

j II,III
p p̂− = σxx

( �ET
p,b,+ + �ET

p,b,− + �ET
p,g,+ exp(−ikz,TIz0)

) + σxyẑ × ( �ET
s,b,+ + �ET

s,b,− + �ET
s,g,+ exp(−ikz,TIz0)

)
, (13d)

where J
I,II
s,(p) is the magnitude of the current in the ŝ (p̂±) direction on the interface between regions I and II, J II,III

s,(p) is the magnitude
of the current in the ŝ (p̂±) direction on the interface between regions II and III, and the subscript T denotes the components
parallel to the interfaces.

By using the boundary conditions containing surface currents, we would have equations determining the radiation field in
regions I and III. These equations are very long, and here we only present the radiation fields in region III solved from these
equations:

Ep,+ = Tp,+;s,g,+Es,g,+ + Tp,+;s,g,−Es,g,− + Tp,+;p,g,+Ep,g,+ + Tp,+;p,g,−Es,g,−, (14a)

Es,+ = Ts,+;s,g,+Es,g,+ + Ts,+;s,g,−Es,g,− + Ts,+;p,g,+Ep,g,+ + Ts,+;p,g,−Es,g,−, (14b)

where Tp,+;s(p),g,± is the magnitude of the TM modes in region III converted from the upward (downward) propagating TE (TM)
modes generated from the random sources, Ts,+;s(p),g,± is the magnitude of the TE modes in region III converted from the upward
(downward) propagating TE (TM) modes generated from the random sources (for the detailed expressions of these coefficients,

please see Appendix B). By using the definition of the Green function �EIII (�,�κ) = g(�,�κ)· �J�,�κ
iωμ0

, we can obtain the general form
of the Green’s function for the slab geometry as

g(�κ,z0,z1,ω) =
[
iTp,+;s,g,+

2kz,TI
p̂V

+ ŝTI + iTp,+;s,g,−
2kz,TI

p̂V
+ ŝTI + iTp,+;p,g,+

2kz,TI
p̂V

+p̂TI
+ + iTp,+;p,g,−

2kz,TI
p̂V

+p̂TI
−

]
eikz,V z1

+
[
iTs,+;s,g,+

2kz,TI
ŝV ŝTI + iTs,+;s,g,−

2kz,TI
ŝV ŝTI + iTs,+;p,g,+

2kz,TI
ŝV p̂TI

+ + iTs,+;p,g,−
2kz,TI

ŝV p̂TI
−

]
eikz,V z1 . (15)

The Green’s function relates the radiation field on the plane z = z1 in region III to the source plane located at z = z0 in the TI
slab for a given angular frequency ω and a given tangential wave vector �κ (a wave vector in the x-y plane).
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By inserting the Green’s function into the expression of the cross-spectral density tensor (7), one can obtain the concrete form
of the cross-spectral density tensor. The concrete expressions of nonvanishing elements are presented below:

Wxx( �R1, �R2,z,ω)

= 4πω3μ2
0ε0ε

′′(ω)O(ω,T )
∫ h

0
dz′

∫ ∞

0

κdκ

2π

ei(kz,V −k∗
z,V )z

|2kz,TI|2
|kz,V |2
� 2

(
J0(κx) − J1(κx)

κx

)
× (|Tp,+;s,g,+|2 + |Tp,+;s,g,−|2 + 2Re(Tp,+;s,g,+Tp,+;s,g,−) + C1(|Tp,+;p,g,+|2 + |Tp,+;p,g,−|2) + 2C2Re(Tp,+;p,g,+Tp,+;p,g,−))

+ 4πω3μ2
0ε0ε

′′(ω)O(ω,T )
∫ h

0
dz′

∫ ∞

0

κdκ

2π

J1 (κx)

κx

ei(kz,V −k∗
z,V )z

|2kz,TI|2
× (|Ts,+;s,g,+|2 + |Ts,+;s,g,−|2 + 2Re(Ts,+;s,g,+Ts,+;s,g,−) + C1(|Ts,+;p,g,+|2 + |Ts,+;p,g,−|2) + 2C2Re(Ts,+;p,g,+Ts,+;p,g,−)),

(16)

Wyy( �R1, �R2,z,ω)

= 4πω3μ2
0ε0ε

′′(ω)O(ω,T )
∫ h

0
dz′

∫ ∞

0

κdκ

2π

ei(kz,V −k∗
z,V )z

|2kz,TI|2
|kz,V |2
� 2

J1 (κx)

κx

× (|Tp,+;s,g,+|2 + |Tp,+;s,g,−|2 + 2Re(Tp,+;s,g,+Tp,+;s,g,−) + C1(|Tp,+;p,g,+|2 + |Tp,+;p,g,−|2) + 2C2Re(Tp,+;p,g,+Tp,+;p,g,−))

+ 4πω3μ2
0ε0ε

′′(ω)O(ω,T )
∫ h

0
dz′

∫ ∞

0

κdκ

2π

(
J0 (κx) − J1 (κx)

κx

)
ei(kz,V −k∗

z,V )z

|2kz,TI|2
× (|Ts,+;s,g,+|2 + |Ts,+;s,g,−|2 + 2Re(Ts,+;s,g,+Ts,+;s,g,−) + C1(|Ts,+;p,g,+|2 + |Ts,+;p,g,−|2) + 2C2Re(Ts,+;p,g,+Ts,+;p,g,−)),

(17)

Wzz( �R1, �R2,z,ω)

= 4πω3μ2
0ε0ε

′′(ω)O(ω,T )
∫ h

0
dz′

∫ ∞

0

κdκ

2π

ei(kz,V −k∗
z,V )z

|2kz,TI|2
|kz,V |2
� 2

J0 (κx)

× (|Tp,+;s,g,+|2 + |Tp,+;s,g,−|2 + 2Re(Tp,+;s,g,+Tp,+;s,g,−) + C1(|Tp,+;p,g,+|2 + |Tp,+;p,g,−|2) + 2C2Re(Tp,+;p,g,+Tp,+;p,g,−)),

(18)

Wxy( �R1, �R2,z,ω) = 4πω3μ2
0ε0ε

′′(ω)O(ω,T )
∫ h

0
dz′

∫ ∞

0

κdκ

2π

ei(kz,V −k∗
z,V )z

|2kz,TI|2
k∗
z,V

�

(
J0 (κx) − J1 (κx)

κx

)
× (Ts,+;s,g,+T ∗

p,+;s,g,+ + Ts,+;s,g,+T ∗
p,+;s,g,− + Ts,+;s,g,−T ∗

p,+;s,g,+ + Ts,+;s,g,−T ∗
p,+;s,g,−

+C1(Ts,+;p,g,+T ∗
p,+;p,g,+ + Ts,+;p,g,−T ∗

p,+;p,g,−) + C2(Ts,+;p,g,+T ∗
p,+;p,g,− + Ts,+;p,g,−T ∗

p,+;p,g,+))

+4πω3μ2
0ε0ε

′′(ω)O(ω,T )
∫ h

0
dz′

∫ ∞

0

κdκ

2π

ei(kz,V −k∗
z,V )z

|2kz,TI|2
kz,V

�

J1 (κx)

κx

× (T ∗
s,+;s,g,+Tp,+;s,g,+ + T ∗

s,+;s,g,+Tp,+;s,g,− + T ∗
s,+;s,g,−Tp,+;s,g,+ + T ∗

s,+;s,g,−Tp,+;s,g,−
+C1(T ∗

s,+;p,g,+Tp,+;p,g,+ + T ∗
s,+;p,g,−Tp,+;p,g,−) + C2(T ∗

s,+;p,g,+Tp,+;p,g,− + T ∗
s,+;p,g,−Tp,+;p,g,+)), (19)

where C1 = |kz,TI|2+ κ2

� 2εμ
C2 = −|kz,TI|2+ κ2

� 2εμ
, and Wxy = Wyx can

be viewed as the consequence of the mode conversion
between the TE and TM modes at the TI surfaces. From
these expressions, we notice that Wzz contains only the TM
contribution, which is due to the fact that only the TM modes
have the z component.

III. THERMAL COHERENCE PROPERTIES OF A TI SLAB

In the section, we will analyze the nonvanishing elements
of the cross-spectral density tensor to study the coherence
properties of a TI slab. We will demonstrate that the coupling
of the gap surface states and the waveguide modes in the TI
slab would introduce a novel resonance, which can modify the
ratio of the TM and TE components in the radiation field.

This modification can lead to the dramatic change of the
coherence properties of the thermal radiation field. To make
the discussion concrete, we set the relative permittivity as
ε = 25,27 with a small dissipation (0.005i) and the relative
permeability μ as 1. The temperature of the TI slab is
set to be T = 6 K (kBT ≈ 0.0005 eV). Without losing the
generality, we work at the maximal radiation frequency of
the temperature (h̄ωmax ≈ 0.0026 eV). These parameters are
assumed throughout the study of the section.

A. A novel resonance and mode conversion at the TI surfaces

For a TI slab, the eigenmodes in the bulk should be the
waveguide modes, which has no difference from a normal
dielectric slab, while except for those the surface states on
the TI surfaces can couple to the waveguide modes in the
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bulk through the scattering of the radiation fields on the TI
surfaces. As the coupling between them is strong, a novel
resonance depending on both the thickness of the slab h and
the surface gap � would be induced. To demonstrate the origin
of the resonance explicitly, we consider the denominators
of the transmission coefficients, which are defined in last
section (the concrete forms are presented in Appendix A).
The denominators of Tp,+;p,g,+, Tp,+;p,g,−, Tp,+;s,g,+, and
Tp,+;s,g,−, which correspond to the transmission channels
leading to the TM modes in vacuum, are the same and given
by

Dp = (1 + �p)2 − (rp − rs�p)2ei2kz,TIh, (20)

where
rs =

√
1/ε − β + 4πσxxkz,V

ω

√
ε

√
1/ε + β + 4πσxxkz,V

ω

√
ε
,

rp =
1 − √

εβ − 4πσxxω

kz,V c2

1 + √
εβ + 4πσxxω

kz,V c2

,

and β = kz,V

√
ε/kz,TI. Similarly, The denominators of

Ts,+;p,g,+, Ts,+;p,g,−, Ts,+;s,g,+, and Ts,+;s,g,−, which corre-
spond to the transmission channels leading to the TE modes
in vacuum, are also the same and given by

Ds = (1 + �s)
2 − (rs − rp�s)

2ei2kz,TIh. (21)

In the above, the expressions of �p and �s are too long, and
we present them in Appendix A.

As the surface states are removed, σxx , �s , and �p are 0,
and thus the above expressions reduce to the denominators
of the transmission coefficients for the TE and TM modes
through a dielectric slab. As it is well known, the zeros of the
denominators present the dispersion of the waveguide modes in
such a dielectric slab. For a TI slab, the additional terms due to
the nonzero σxx , �s , and �p can be viewed as the consequence
of the coupling of the surface states and the waveguide modes
through the scattering of the radiation fields on the TI surfaces.

To see the effects of such a coupling clearly, we assume
that the thickness of the TI slab is smaller than π

�
√

εT I −εV
≈

0.2 (λ/2) so that only the fundamental waveguide modes exist
in the bulk. When the surface gap � is smaller than the photon
energy of the radiation field, we find that both Dp and Ds

have no zero points within the regime of slab thickness, which
indicates that the coupling between the surface states and the
waveguide modes is very weak. This parameter regime on
the h − � plane is the interband transition regime, which is
highlighted in blue color in Fig. 2(a). As the surface gap is
larger than the photon energy of the radiation field, zeros can
be found in Dp for a proper thickness, which means that the
coupling between the surface states and the waveguide modes
can induce a novel resonance to the transmission channels
leading to the TM modes in vacuum. As 2� is larger but
comparable with h̄ω (2� � h̄ω), the thickness h, for which
the resonance can be induced, decreases with the increasing
of the surface gap �. This parameter regime is the crossover
regime, which is highlighted in yellow color in Fig. 2(a). When
� is much larger than h̄ω (� � h̄ω), the thickness h, for
which the resonance can be induced, is fixed at 0.119λmax/2
and independent of the increasing of the surface gap. This
parameter regime is the half integer quantized surface Hall

conductivity (HIQSHC) regime, which is highlighted in red in
Fig. 2(a).

Since the novel resonance is introduced to all transmission
channels leading to the TM modes in vacuum, the ratio of
the TM and TE modes in the radiation field in vacuum would
change accordingly. To present the point clearly, we introduce
a quantity to characterize the ratio:

Re = Wxx,p( �R1 − �R2 = �0) + Wyy,p( �R1 − �R2 = �0)

Wxx,s( �R1 − �R2 = �0) + Wyy,s( �R1 − �R2 = �0)
, (22)

where Wxx,p(s)(�0) is the energy of the x-component radiation
field contributed by the TM (TE) modes, and Wyy,p(s)(�0) is the
energy of the y-component radiation field contributed by the
TM (TE) modes. Thus, Re describes the ratio of the TM and TE
modes in the tangential components of the radiation field. We
plot the ratio Re as a function of a function of slab thickness (h)
and surface gap (�) in Fig. 2(b). The calculation is conducted
for the radiation field on the plane of a height z = λmax/20
(λmax ≈ 477 μm) above the upper TI/vacuum interface. It can
be seen that Re is much larger in the vicinity of the resonant
states, which is denoted by the white curve with symbols.

As an example of a TI slab of a specified thickness, we
set the slab thickness as h = 0.116λmax/2 so that it is in the
vicinity of the resonant thickness (h = 0.119λmax/2) in the
HIQSHC regime. Then we plot the ratio Re as the function
of the surface gap � in Fig. 2(c). We find that the variations
of Re versus � in the three regimes mentioned above are
quite different: (1) as 2� � h̄ω, the system is in the interband
transition regime, and the ratio Re is very small, which means
the TE modes dominate the tangential components in the
radiation field; (2) as 2� � h̄ω, the system enters the crossover
regime, and the ratio increases sensitively with the increasing
of the surface gap �; (3) as � � h̄ω, the system is in the
HIQSHC regime, and the ratio approaches the maximal values
and manifests a plateau.

B. Spatial coherence of the thermal radiation field

The change of the ratio of the TM and TE modes
in the radiation field would have great influence on the
spatial coherence of the thermal radiation field. As shown
in Appendix B, the TM and TE radiation modes exhibit
quite different spatial coherence behaviors. Therefore, with
the variation of Re, one can expect that the spatial coherence
of the thermal radiation field should change accordingly. To
demonstrate the point explicitly, we consider a TI slab of a
thickness h = 0.116λmax/2 and calculate the nonvanishing
elements of the cross-spectral density tensor by probing the
radiation field on the plane λmax/20 above the upper TI/vacuum
interface along the x axis (see Fig. 1).

In Fig. 3(a), we first show the spatial coherence of Wxx at
four different surface gaps. For a comparison, we also show
the spatial coherence of Wxx for the dielectric slab with the
same permittivity, permeability, and thickness [black curve
in Fig. 3(a)]. In Fig. 3(a), with the increasing surface gap,
the spatial coherence of Wxx increases accordingly until the
system enters the HIQSHC regime. We also notice that the
spatial coherence of Wxx at � = 0 eV is almost the same
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FIG. 3. (Color online) (a) Wxx(| �R1 − �R2|) versus x = | �R1 − �R2|
for various surface gaps; the black curve is Wxx(| �R1 − �R2|) for the
dielectric slab. (b) Plot of the coherence length of Wxx(| �R1 − �R2|) as
a function of the surface gap �. In the calculation, we assume that the
thickness of the TI slab is h = 0.116λmax/2, and the dielectric slab
has the same permittivity, permeability, and thickness as the TI slab.

with that of the dielectric slab with the same permittivity,
permeability, and thickness.

To quantitatively characterize the spatial coherence, one
may define the coherence length of an element in the cross-
spectral density tensor Wαβ as6

�αβ(z,λ) = 2
∫ ∞

0 |Wαβ(x,z,λ)|2
|Wαβ(0,z,λ)|2 , (23)

where z is the distance between the probing plane and the
upper TI/vacuum interface, and λ is the wavelength under
the consideration. For our present case, z = λmax/20, and
λ corresponds to the wavelength of the maximal radiation
frequency of the temperature.

In Fig. 3(b), we plot the coherence length �xx of Wxx as
a function of the surface gap �. In the interband transition
regime, the coherence length is very small and does not
change very much with the variation of the surface gap. In
the crossover regime, the coherence length increases with the
increasing of the surface gap very sensitively. As the system
enters the HIQSHC regime, the coherence length approaches
the maximal value and manifests again a plateau with the
increasing of the surface gap. We notice that the coherence
length of Wxx for the dielectric slab of the same permittivity,
permeability, and thickness is about 0.17λmax, which is slightly
longer than the coherence length of Wxx for the TI slab
in the interband transition regime (�xx ∼ 0.165λmax). In the
HIQSHC regime, the coherence length of Wxx is as long

(a)

max

Dielectirc slabDielectirc slab

(b)

ω   =2Δmax

crossover quantized 

ħωmax

FIG. 4. (Color online) (a) Wyy(| �R1 − �R2|) versus x = | �R1 − �R2|
for various surface gaps; the black curve is Wyy(| �R1 − �R2|) for the
dielectric slab. (b) Plot of the coherence length of Wyy(| �R1 − �R2|) as
a function of the surface gap �. In the calculation, we assume that the
thickness of the TI slab is h = 0.116λmax/2, and the dielectric slab
has the same permittivity, permeability, and thickness as the TI slab.

as �xx ∼ 1.25λmax, which is almost ten times the coherence
length of Wxx for the dielectric slab.

Then we show the spatial coherence of Wyy at four different
surface gaps in Fig. 4(a). The spatial coherence of Wyy for
the dielectric slab of the same permittivity, permeability, and
thickness is also shown by the black curve in Fig. 4(a) for a
comparison. For a quantitative description of the behavior, we
present the coherence length of Wyy as a function of surface
gap in Fig. 4(b). From the results shown in Fig. 4, we observe
that the coherence length of Wyy deceases with the increasing
surface gap. For Wyy , the coherence length of the dielectric
slab is about 0.49λmax, which is also slightly larger than the
coherence length of the TI slab in the interband transition
regime (�xx ∼ 0.488λmax). The coherence length of Wyy for
the TI slab in the HIQSHC regime is about 0.32λmax, which is
about 2/3 the coherence length of the dielectric slab.

The opposite behaviors of Wxx and Wyy with the increasing
surface gap can be understood from the ratio Re. With the
increasing of the surface gap, Re increases, which means the
radiation field contains more and more TM components. For
Wxx , TM modes have a much better coherence than TE modes
(see Appendix B). Therefore, the coherence length of Wxx

increases with the increasing surface gap. However, for Wyy ,
TE modes have a much better coherence than TM modes (see
Appendix B). Consequently, the behavior of Wyy is opposite
to that of Wxx , when the surface gap increases.

For Wzz, it contains only the contribution from TM modes,
so the spatial coherence of Wzz would not change with the vari-
ation of the surface gap. For this reason, we do not present the

205424-7



XIAO, LI, LAW, HOU, CHAN, AND WEN PHYSICAL REVIEW B 87, 205424 (2013)

spatial coherence of Wzz here. On the other hand, the nonzero
surface Hall conductivity would induce the nonvanishing
off-diagonal element Wxy (Wyx), which is simply vanishing
for a dielectric slab. However, comparing to the diagonal
elements, for example Wxx , its correlation strength [|Wxy(�0)|]
is about 1/200 of that of Wxx . Given the weakness of the
correlation, we do not discuss the element Wxy here either.

C. Thermal radiation energy density

Another important quantity characterizing the thermal
radiation field is the thermal radiation energy density, which
can be expressed in terms of the cross-spectral density tensor as

Ue (z,ωmax) = ε0

2π2
Tr (W) , (24)

where Tr denotes the trace of the cross-spectral density tensor,
and ωmax denotes the maximal radiation frequency of the
temperature T = 6 K. By using the formula, we calculate
the thermal radiation energy density from the TI slab of a
thickness h = 0.116λmax/2. For the easy comparison with the
results from other systems, we have normalized the results to
the black-body radiation energy density for a given frequency
2ω2

πc
O(ωmax,T ).
In Fig. 5(a), we plot Ue as the function of � by probing

the radiation field on the plane z = λmax/20 above the upper
TI/vacuum interface along the x axis. We notice that the
variation of Ue versus � is very similar to that of Re. In
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FIG. 5. (Color online) (a) Plot of the thermal radiation energy
density (Ue versus the surface gap � on the plane z = λmax/20 above
the upper TI/vacuum interface. (b) Plot of Ue versus the height z for
various surface gaps.

Fig. 5(b), we plot Ue as a function of z, which measures
the height of the detection plane from the upper TI/vacuum
interface. Due to the nonvanishing σR

xx and σ I
xy in the interband

transition regime, Ue [red curve in Fig. 5(b)] is even lower than
that of a dielectric slab [black curve in Fig. 5(b)]. Remarkably,
for a specified case the thickness h = 0.116λmax/2, the gapped
surface state can significantly enhance Ue (up to 7500 times of
the black-body radiation energy at the given frequency), when
the system enters the HIQSHC regime [see Fig. 5(a)].

IV. COMPARISON WITH THE SYSTEMS
SUPPORTING SURFACE STATES

Before we make the conclusions, we would like to compare
our results with the systems supporting surface states.1 By
using the definition of the coherence length (23), we calculate
the coherence length of Wxx by probing the radiation field on
the plane z = λmax/20 above the SiC surface [see Fig. 2(b)
in Ref. 1]. The coherence length �xx in their case is about
0.61λmax, which is only half of the coherence length �xx for
the TI slab of the thickness h = 0.116λmax/2 in the HIQSHC
regime [see Fig. 3(b)]. We also calculate and compare the
coherence lengths of Wyy and Wzz for these two materials. For
both of them, the coherence lengths for the TI slab is slightly
longer than those for SiC material. For example, the coherence
length of Wyy is 0.32λmax for the TI slab and 0.29λmax for SiC,
and the coherence length of Wzz is 0.68λmax for the TI slab
and 0.62λmax for SiC.

On the other hand, the radiation energy density on the plane
z = λmax/20 above the SiC surface is found to be about 400
times of the black-body radiation energy density at the given
frequency. However, due to the photon energy for Ref. 1 is
much larger (about 50 times of the photon energy under the
consideration in the present study). Therefore, the radiation
energy density for SiC systems is about three times that of
the TI slab of the thickness h = 0.116λmax/2 in the HIQSHC
regime.

From the comparison, we notice that the low working
frequency is the main problem of TI slabs as thermal radiation
sources. This big problem is mainly due to the small surface
gap (typically in the order of 0.01 eV). As demonstrated, a
higher working frequency would drive the system into the
interband transition regime, in which the coupling between
the surface states and waveguide modes is generally small and
cannot provide much improvement to the coherence of the
thermal radiation field.

V. CONCLUDING REMARKS

In this work, we first develop a general Green’s-function
method applied to the slab geometry. Given the advantages of
the method, we can handle quite complex conversions between
different polarized modes at the interface. By using the method,
we study the effects of the surface states on the coherence
properties of the thermal radiation field from a TI slab. We find
when the surface gap is larger than the photon energy of the
radiation field, the strong coupling between the surface states
and waveguide modes can change the coherence properties of
the thermal radiation field very much. As a specified example
we consider the TI slab of a thickness h = 0.116λmax/2 and
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probe the thermal radiation field on the plane z = λmax/20
above the upper TI/vacuum interface. Though the radiation
energy density from the TI slab is about 1/3 of that from SiC,
surprisingly, the coherence length of Wxx for the TI slab can
be remarkably as long as twice that for SiC.
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APPENDIX A: EXPRESSIONS OF THE
TRANSMISSION COEFFICIENTS

By solving the equation obtained by matching boundary
conditions at the TI/vacuum interfaces, we can solve out
the radiation field in region III (above the upper TI/vacuum
interface). In Eq. (14) of the main text, we expressed the
radiation field by transmission coefficients. Considering the
expressions are too long, we do not give the explicit form
in the main text. Here we would like to provide the detailed
expressions, since in Sec. III of the main text we have to use
the expression to determine the position of the resonance.

As demonstrated, the transmission coefficients leading to
the TM modes in vacuum would have the same denominator:

Dp = (1 + �p)2 − (rp − rs�p)2ei2kz,TIh, (A1)

and the transmission coefficients leading to the TE modes in
vacuum have also the same denominator:

Ds = (1 + �s)
2 − (rs − rp�s)

2ei2kz,TIh, (A2)

where rp and rs have been defined in the main text, �p and
�s are given by

�p = ϒ2β(1 − ei2kz,TIh)

��
(
1 − r2

s ei2kz,TIh
) , (A3)

�s = ϒ2β(1 − ei2kz,TIh)

��
(
1 − r2

pei2kz,TIh
) . (A4)

In the above equations, the coefficients ϒ , �, and � are given
by

ϒ = −4πσxy

cπ

√
μ

ε
, (A5)

� =
√

μ

ε
+ β + 4πkz,V σxx

ω

√
μ

ε
, (A6)

� = 1 +
√

μ

ε
β + 4πωμσxx

c2kz,TI
. (A7)

By using these parameters, the transmission coefficients are
given by

Tp,+;s,g,+ = (−2ϒ�pB1e
ikz,TI(h−z′) − 2ϒB1e

ikz,TI(h−z′) + 2rpϒB2e
ikz,TI(3h−z′) − 2rsϒ�pB2e

ikz,TI(3h−z′))

eikz,V hDp

, (A8)

Tp,+;s,g,− = (2ϒ�pB2e
ikz,TI(h+z′) + 2ϒB2e

ikz,TI(h+z′) − 2rpϒB1e
ikz,TI(h+z′) + 2rsϒ�pB1e

ikz,TI(h+z′))

eikz,V hDp

, (A9)

Tp,+;p,g,+ =
( 2�p

�
eikz,TI(h−z′) + 2

�
eikz,TI(h−z′)

)
eikz,V hDp

, (A10)

Tp,+;p,g,− =
( 2rp

�
eikz,TI(h+z′) − 2rs�p

�
eikz,TI(h+z′)

)
eikz,V hDp

, (A11)

Ts,+;s,g,+ =
( 2�s

�
eikz,TI(h−z′) + 2

�
eikz,TI(h−z′)

)
eikz,V hDs

, (A12)

Ts,+;s,g,− =
( 2rs

�
eikz,TI(h+z′) − 2rp�s

�
eikz,TI(h+z′)

)
eikz,V hDs

, (A13)

Ts,+;p,g,+ = (2ϒ�sB3e
ikz,TI(h−z′) + 2ϒB3e

ikz,TI(h−z′) − 2rpϒ�sB4e
ikz,TI(3h−z′) + 2rsϒB4e

ikz,TI(3h−z′))

eikz,V hDs

, (A14)

Ts,+;p,g,− = (2ϒ�sB4e
ikz,TI(h+z′) + 2ϒB4e

ikz,TI(h+z′) − 2rpϒ�sB3e
ikz,TI(h+z′) + 2rsϒB3e

ikz,TI(h+z′))

eikz,V hDs

, (A15)

where the four parameters B1, B2, B3, and B4 are given by

B1 = 1 − rse
i2kz,TIh

��
(
1 − ei2kz,TIhr2

s

) , (A16)

B2 = 1 − rs

��
(
1 − ei2kz,TIhr2

s

) , (A17)

B3 = β(1 + rpei2kz,TIh)

��
(
1 − ei2kz,TIhr2

p

) , (A18)

B4 = β(1 + rp)

��
(
1 − ei2kz,TIhr2

s

) . (A19)
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FIG. 6. (Color online) (a) Wxx(| �R1 − �R2|) and Wyy(| �R1 − �R2|) versus x = | �R1 − �R2| for the TM radiation mode from a dielectric slab;
(b) Wxx(| �R1 − �R2|) and Wyy(| �R1 − �R2|) versus x = | �R1 − �R2| for the TE radiation mode from a dielectric slab.

APPENDIX B: SPATIAL COHERENCE
OF TE AND TM MODES

We consider a dielectric slab of no surface state. To
explicitly demonstrate the difference between the TM and TE
radiation modes, we plot the spatial coherence (Wxx and Wyy)
of the TM polarized thermal radiation field in Fig. 6(a), and
that of the TE polarized thermal radiation field in Fig. 6(b).
The calculation is performed by probing the thermal radiation
field on the plane z = λmax/20 above the upper TI/vacuum
interface at the maximal radiation frequency of T = 6 K
(h̄ωmax ≈ 0.0026 eV). The thickness of the TI is set to be
h = 0.116λmax/2 (the same with the main text). From the

dispersion relations of the waveguide modes, we note that
for the same frequency, the TM mode always bears a smaller
tangential wave vector. It explains the fact that the periodicity
of the spatial coherence of TM mode [Fig. 6(a)] is larger
than that of TE mode [Fig. 6(b)]. Since we are interested in
the spatial coherence along a straight line in the x direction
connecting two observation points, the waveguide modes
with larger x-component wave vector should have a larger
contribution. A larger x-component wave vector would result
in larger y-component electric field for TE modes but larger
x-component electric field for TM modes. As a consequence,
one observes better coherence for the y component of TE mode
and the x component of TM mode.
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