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a b s t r a c t

The interaction between nanoparticles and an electric field is explored from the electrorheological
(ER) point of view, using variational formulations for both the static and dynamic characteristics. In
the first part the static characteristics of the ER fluid, consisting of a dispersion of solid particles in a
liquid, is detailed by using the spectral representation approach for the effective dielectric constant.
Predictions concerning the ground state structure, yield stress, upper bounds on the ER effect are
presented together with comparisons to experimental results. The giant ER effect, involving a different
paradigm of permanent electric dipoles, is described phenomenologically. In the second part the ER fluid
dynamics is formulated via the variational principle of Onsager. Predictions of the model are compared
with experiments. It is shown that the phenomenon of the diminishing ER effect at high shear rates may
be mitigated by the planar interdigital electrode configuration.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Consider a dispersion of particles in a fluidmedium inwhich the
particles are nano-sized or otherwise. The particles and the fluid
are electrically non-conducting or slightly conducting. The latter
criterion will be better defined later. When an electric field EE is
applied to such a colloidal dispersion, the particleswill be polarized
electrically. Let εs denote the complex dielectric constant of the
solid particles and ε` that of the liquid; then for spherically shaped
particles, whichwill be the particle shape considered in this article,
the induced dipole moment may be expressed as

Ep =
εs − ε`

εs + 2ε`
a3EE = βa3EE, (1)

where a is the radius of the particles. Here EE should be understood
as the field at the location of the particle. The resulting (induced)
dipole–dipole interaction between the particles means that the
random dispersion is not the lowest energy state of the system,
and particles would tend to aggregate and form chains/columns
along the applied field direction. The formation of chains/columns
is the reason why such colloids exhibit an increased viscosity or
even solid-like behaviorwhen sheared in a direction perpendicular
to the electric field. Such rheological variation is denoted the
electrorheological effect, or ER effect. The colloids which exhibit
significant ER effect are denoted electrorheological fluids, or
ER fluids. The formation of chains/columns is governed by the
competition between electrical energy and entropy of the particles,
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Fig. 1. A plot of the curve γ = Ep · EE/kBT = 1, above which the ER effect dominates
and below which the entropy effect dominates.

which is manifest in the value of the dimensionless parameter
γ = Ep · EE/kBT , where kB is the Boltzmann constant and T the
temperature. For room temperature and Ep given by Eq. (1), γ = 1
defines the boundary between the entropy-dominated regime and
the ER regime. The resulting relation between the electric field and
the effective size of the particle, given by (βa3)1/3, is shown in
Fig. 1.
In what follows, we will mostly be concerned with the ER

regime, where the electrical energy dominates. In Fig. 2 we show
that in the ER regime, the particles tend to form chains in a weak
field and columns in a strong field. In most practical systems, the
highest electric field one can apply before electrical breakdown is
of the order of 50 kV/cm. Hence we are limited to particles with
β1/3a ≥ 10 nm.
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Fig. 2. The structural evolution of dielectric microspheres under an increasing
electric field, from (a) no field, to (b) a moderate field of 500 V mm−1 , to (c) a
strong field of 900 V mm−1 . Here the ER fluid consists of 1.5 micron glass spheres
suspended in silicone oil.

1.1. History of the ER effect and its potential applications

As described above, the ER colloids are capable of viscosity
variation or even solidification in response to an applied electric
field. The rheological variation is reversible when the field is
removed. The response time can be as short as a few milliseconds.
Due to such marvelous features, the ER fluids can serve as
an electric–mechanical interface; and when they are coupled
with sensors (as triggers to activate the electric field), many
mechanical devices such as clutches, valves, dampers etc may be
converted into active mechanical elements capable of responding
to environmental variations — hence ER fluids are sometimes
denoted as a type of ‘‘smart’’ fluid. The diverse applications
potential hasmade ER fluids a persistent area of study ever since its
discovery six decades ago by Winslow [1–3]. However, during the
period between its discovery in the late 1940s and the early 1980s,
the ER effect was mainly a subject of scientific curiosity. It was
not until the 1980s that serious research efforts were mounted,
fueled in part by its potential for applications [4–10]. There have
always been two sides to the ER research efforts. On one side is
the basic research looking into the ER mechanism(s), and on the
other are the attempts to realize the activemechanical devices. The
peak of ER research occurred in late 1980s and early 1990s, but
waned afterwards owing to the lack of progress on the material
side of the research. In particular, the ‘‘solidification’’ of the ER
fluids under a strong electric field, characterizable by a yield stress,
can at most reach something comparable to hard ‘‘tofu,’’ which is
not sufficient for most engineering applications. But research into
the basic mechanism(s) of the ER effect persisted [11–19]. More
recently, however, the discovery of the ‘‘giant’’ ER effect [20–22], in
nanoparticles of barium titanyl oxalate coated with urea, together
with the appeal in the basic science of nanoparticles and their
dynamics, have renewed interest in this area.

1.2. Outline

This review article is conveniently divided into a part involv-
ing the static structure of the ER fluids and its rheological char-
acteristics, and a part on the electrorheological fluid dynamics. In
the first part, a brief review of the conventional ER mechanism
and the conceptual advance that made its quantitative modeling
possible are given in Section 2. In particular, the variational for-
mulation of the approach and the attendant implementation us-
ing the Bergman–Milton representation theory of the effective di-
electric constant are detailed. Comparisons with experiments, in
particular the ground state structure(s), the yield stress, the up-
per bound and its variation with particle size, and the nonlinearity
and anisotropy of the effective dielectric constant, are detailed in
Section 3 together with an explanation of their physical underpin-
nings. The motivation and discovery of the giant ER effect are pre-
sented in Section 4, together with a phenomenological theory for
its mechanism.
In the second part, ER fluid dynamicswill be addressed from the
continuum hydrodynamic point of view. The Onsager variational
principle and its statistical mechanic underpinnings will first be
briefly introduced in Section 5, followed by the formulation of the
two-phase modelling approach and the derivation of the relevant
equations of motion in Section 6. Numerical implementation and
predictions of the model are described in Section 7, together with
the resolution of the shear-thinning behavior commonly observed
in ER fluids at high shear rates.

2. Mechanism of the electrorheological effect

A heuristic explanation of the ER effect has been given in the
previous section. However, such a simple picture leaves many
questions unanswered. In particular, as the particles aggregate and
touch,multipole interactions (those beyond the dipole interaction)
necessarily become dominant, and the local field effect must
also be taken into account. In addition, the conductivity and/or
relaxational effects, appearing as the imaginary part of the particle
and/or fluid dielectric constants, may contribute to the ER effect.
These complications make the direct simulation of the ER effect
quite difficult, and their characteristics beyond the realm of
accurate prediction. In particular, for applications it is desirable
to have an upper bound on the ER effect, so that devices may be
designed accordingly.

2.1. Variational formulation

The conceptual advance that made the quantitative modeling
of ER effect possible is the variational formulation [13,19]
and description of the ER characteristics, i.e., the ground state
microstructure of the solid microparticles under a high electric
field, and its relevant stress–strain relation.
The variational principle is cast in terms of theGibbs free energy

density f :

f = −
1
8π
EE · Re(ε̃eff ) · EE − TS = −

1
8π
Re(ε̄zz)E2 − TS. (2)

Here S denotes entropy, Re() means taking the real part of the
quantity in the parenthesis, and the effective dielectric constant
tensor ε̃eff is defined and given by

ED = ε̃eff EE, (3a)

ε̃eff =

(
ε̄xx ε̄xy ε̄xz
ε̄yx ε̄yy ε̄yz
ε̄zx ε̄zy ε̄zz

)
, (3b)

where ED denotes the displacement field, EE the electric field
(assumed to be along the z direction), and the matrix elements of
ε̃eff are complex in general (in the form of κ + i(4πσ/ω), with σ
being the conductivity and ω the angular frequency of the applied
electric field).
The effective dielectric constant concept is based on the

nature of electromagnetic wave interaction with inhomogeneous
materials. When the frequency of the electromagnetic wave is
sufficiently low so that its relevant wavelength is much larger than
the scale of the inhomogeneities, microstructure can no longer be
resolved, and the (fluid–solid) composite appears homogeneous
to the probing wave. In that limit the electromagnetic response
is fully captured by the effective dielectric constant tensor, which
would simplify to an effective dielectric constant when the
material is isotropic [23].
It should probably be noted that a strictly DC electric field is

often experimentally not advisable. This is because owing to the
small conductivities that may exist in either the solid particles
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or the liquid, or both, there is a time constant τ that is inversely
proportional to the conductivities. A DC electric field will be
screened by the ions at time t > τ . Hence a low frequency electric
field is generally applied so as to avoid screening, which does not
detract from the fact that the system is still in the long wavelength
limit.
An important element of the variational formulation is that

the magnitudes of the matrix elements in the effective dielectric
constant tensor are dependent on the relative volume fraction(s) of
the constituents, as well as the anisotropy and the microstructure.
This aspect enables us to link the free energy density, which
is to be minimized, directly to the microstructure. Hence one
can determine the ground state structure in the high field limit
(so that the entropy term can be neglected) by minimizing the
free energy with respect to the microstructure. In particular,
one wants to maximize the (real part of the) zz component
of the effective dielectric constant matrix elements through
microstructural adjustments, as stipulated by Eq. (2).
By focusing on the ER regime, we assume that the electrical part

of the free energy is much larger than the entropy part, and the
second term on the right hand side of Eq. (2) is thereby ignored.
In order to find the ground state microstructure explicitly, we
assume that the system consists of equal-sized solidmicrospheres,
and note that the ground state must have a periodic structure,
since it is unique. Provided that the ground state can be found,
the shear modulus and the yield stress may be obtained from the
ground state microstructure by defining a local shear distortion
and calculating the free energy difference from the ground state.
The yield stress, if there is one, is defined by themaximum point of
the shear stress vs. shear strain plot, beyondwhich the shear stress
decreases with increasing strain, implying instability.
The advantage of the variational approach is that it solves,

in one step, all the difficulties posed earlier. In particular, the
local field effect and the multipole interactions are all accounted
for, provided the effective dielectric constant can be accurately
evaluated. In addition, the contribution of the imaginary part
of the dielectric constant may also be incorporated through the
imaginary parts of the components’ dielectric constants.

2.2. Effective dielectric constant — the Bergman–Milton spectral
representation

Since the essence of calculating the free energy lies in the
evaluation of the effective dielectric constant, a rigorous approach
to the evaluation of εzz is desirable. This is because we want to
distinguish the energies of differentmicrostructures for the (equal-
sized) microspheres, e.g., body centered tetragonal (BCT) structure
versus the face centered cubic (FCC) structure. These differences
can be quite small and would not show up in the usual effective
medium theories. In fact, the small differences between the
different microstructures are manifest only at high filling fractions
of the microspheres, since in that limit there can be differences
in the local environments for the different periodic structures.
The Bergman–Milton spectral function representation [24–28] of
the effective dielectric constant provides the perfect approach to
distinguish the structures from the value of ε̄zz . The starting point
of its derivation is the Laplace equation

∇ · (ε(Er)∇ϕ(Er)) = 0. (4)

Here ϕ is the electrical potential, i.e., EE = −∇ϕ, and ε(Er) is the
local dielectric constant, given by

ε(Er) = ε`

(
1−

1
s
η(Er)

)
, (5a)
where

s =
ε`

ε` − εs
, (5b)

ε` denotes the liquid dielectric constant and εs the solid dielectric
constant. Here η is the characteristic function, defined to be 1
inside the solid particles and zero elsewhere. The microgeometric
information of the system are contained in η. In contrast, the
parameter s (which can be complex) contains the material
characteristics. For later developments it is important to note that
if the dielectric constants are real, then the value of s is either
greater than 1 or less than zero. In other words, a real s can not
take any value between 0 and 1.
By rewriting Eqs. (4) and (5) as

∇
2ϕ(Er) =

1
s
∇ · (η(Er)∇ϕ(Er)), (6)

with the boundary conditions ϕ(x, y, z = 0) = 0, and ϕ(x, y, z =
L) = L (i.e., average Ez = −1), the potential ϕ may be formally
solved as

ϕ = z +
1
s
Γ̂ ϕ, (7a)

or

ϕ −
1
s
Γ̂ ϕ = z. (7b)

Eq. (7b) has a formal solution, given by

ϕ =

(
1−

1
s
Γ̂

)−1
z. (7c)

Here Γ̂ is an integral operator defined by

Γ̂ =

∫
dV ′η(Er ′)∇ ′G(Er, Er ′) · ∇ ′, (8)

and G(Er, Er ′) = 1/4π |Er − Er ′| is the Green function of the Laplacian.
The integral operator Γ̂ is a projection operator as can be seen from
Eq. (8), since the Green function may be regarded as the inverse of
the Laplacian operator (two successive gradient operators). Hence
the eigenvalues of Γ̂ lie between 0 and 1. The integral operator Γ̂
is Hermitian under the following definition of the inner product:

〈ψ |ϕ〉 =

∫
dVη(Er)∇ψ∗(Er) · ∇ϕ(Er). (9)

Ifϕu and su are respectively the eigenfunctions and their associated
eigenvalues of the integral (Hermitian) operator Γ̂ , then it is
possible to express the zz component of the effective dielectric
tensor, ε̄zz , as the volume-averaged value of Dz divided by the
volume averaged value of the electric field, given simply by Ez =
−1. That is,

ε̄zz =
1
V

∫
dV [ε`(1− η(Er))+ εsη(Er)]

∂ϕ(Er)
∂z

= ε`

(
1−

1
V

∫
dV
1
s
η(Er)∇ϕ · ∇z

)
= ε`

(
1−

s−1

V
〈z|ϕ〉

)
. (10)

By substituting Eq. (7c) for |ϕ〉 in Eq. (10), we obtain

ε̄zz = ε`

(
1−

1
V
〈z|
(
s− Γ̂

)−1
|z〉
)

= ε`

(
1−

1
V

∑
u

〈z|
(
s− Γ̂

)−1
|ϕu〉〈ϕu|z〉

)
,
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where we have denoted the eigenfunctions of the Γ̂ operator as
ϕu (with associated eigenvalue su), defined as Γ̂ ϕu = suϕu, with∑
u |ϕu〉〈ϕu| = 1, the identity matrix. From the above we obtain

the spectral representation of ε̄zz as

ε̄zz = ε`

(
1−

1
V

∑
u

|〈z|ϕu〉|2

s− su

)
. (11)

Here V is the sample volume, a normalization factor. The most
remarkable feature of Eq. (11), which is exact, is the fact that
material properties, given by s, are completely separated from the
geometric information (contained in ϕu and su) as ‘‘filtered’’ by the
Laplacian. Since both the solid and liquid dielectric constants can
be complex, s is a complex number in general. At the same time,
it is clear that if s is real, then its value as given by Eq. (5b) should
be either less than zero or greater than 1, as noted before. Since
both |〈z|ϕu〉|2 and su are real, with the additional constraint that
0 < su < 1 as already stated, it follows that s − su can approach
zero only in limiting cases, and these cases define the upper bounds
for the shear modulus and yield stress, described below.
Eq. (11) makes clear that the imaginary parts of the dielectric

constants can indeed contribute to Re(ε̄zz) (through the complex
material parameter s), and hence the ER effect.

2.3. Computational formalism

We would like to use the spectral representation to accurately
evaluate the effective dielectric constant for different periodic
structures formed by micro/nanospheres, and identify the ground
state structurewhich should have the largest Re(ε̄zz) in accordance
with the variational principle stated earlier. Here the assumption
is that the ground state structure is unique and therefore must
be periodic. However, as seen from Fig. 2 the ER microstructure
consists of two scales. On the macroscale there is a clear phase
separation when a strong electric field is applied so that γ � 1.
The two phases in the ER fluid are the dense ‘‘column’’ phase and
the fluid phase, and the overall effective dielectric constantmust be
a suitable average of the two. If we denote the dielectric constant
of the columns as ε̄zzcol, the volume fraction of spheres inside the
column as pcol, and the overall volume fraction of solid spheres as
p, then it is well-known that for the column geometry, the overall
effective dielectric constant is simply the arithmetic average:

ε̄zz =
p
pcol

ε̄zzcol +

(
1−

p
pcol

)
ε`. (12)

The spectral function approach can be used to accurately predict
ε̄zzcol for different microscale periodic structures inside the column.
Since the column is finite in cross-section, its surface energy can
also be evaluated. It has been found that the surface energy is
∼10−3 times smaller than that of the bulk [19]. Hence for all
practical purposeswe can ignore the small surface energy and treat
the column as infinite crystals in our evaluation of ε̄zzcol.
It should be noted that the accurate calculation of ε̄zzcol is usually

outside the capability of most effective medium theories, since
these theories are generally suitable for random media and hence
can not distinguish between the different periodic structures.
To obtain ε̄zzcol numerically, Eq. (7b) may be solved by

expanding the potential ϕ in terms of complete, orthogonal basis
functions [19], so that Eq. (7b) is expressed as a set of linear
simultaneous equations with the expansion coefficients as the
unknowns. In particular, if we use local basis functions (spherical
basis, see below) to expand the potential inside each solid sphere,
then Eq. (7b) may be written as∑
ER′

∑
`′,m′

(
δERER′δ``′δmm′ −

1
s
Γ̂`m,`′m′(ER− ER′)

)
A`′m′(ER′)

= z`m(ER), (13)
where A`m(ER) denotes the expansion coefficient of the potential
inside a sphere centered at ER, the subscript indices `,m denote the
spherical harmonics,

Γ̂`′m′,`m(ER− ER′) = 〈χ`′m′(Er − ER′)|Γ̂ |χ`m(Er − ER)〉 (14)

denotes the matrix element of the operator Γ̂ , and z`m(ER) =
〈χ`m(Er−ER)|z〉. Here χ`m(Er−ER) = f`(|Er−ER|)Y`m(θ, φ) denotes the
local spherical basis function centered at ER. The periodic structure
enters through thematrix elements as expressed by Eq. (14),where
ER denotes the lattice vectors.
In order to choose the local basis function so that the matrix

elements and the right-hand side may be explicitly evaluated, we
would like to have χ`m’s be the eigenfunctions of the Γ̂ operator
for a single sphere with radius a. That is, we would like to have

Γ̂ χ`m(Er) ≡
∫
dEr ′η(Er ′)∇ ′G(Er, Er ′) · ∇ ′χ`m(Er ′)

=

∫
dS ′n̂ · ∇ ′G(Er, Er ′)χ`m(Er ′)+ χ`m(Er)η(Er)

= s`mχ`m(Er). (15a)

Here we have let ER = 0, η(Er) = 1 for |Er| < a, and zero otherwise;
n̂ denotes the outward normal at the surface of the sphere, and s`m
denotes the eigenvalue of the local eigenvector/basis function. In
Eq. (15a), integration by parts has been performed in going from
the first line to the second line.
By using the spherical harmonics expansion for the Green

function,

G(Er, Er ′) =
1

4π |Er − Er ′|
=

∑
`m

1
2`+ 1

r`<
r`+1>

Y`m(θ, φ)Y ∗`m(θ
′, φ′),

with r< = min(r, r ′) and r> = max(r, r ′), Eq. (15a) can be re-
written as

a2
`

2`+ 1
a`−1

r`+1
f`(a) = s`mf`(r), r > a, (15b)

−a2
`+ 1
2`+ 1

r`

a`+2
f`(a)+ f`(r) = s`mf`(r), r < a. (15c)

Eqs. (15b) and (15c) can be easily solved explicitly, leading to

f`(r) =
( r
a

)` 1
√
a`

for r < a, (16a)

f`(r) =
(a
r

)`+1 1
√
a`

for r ≥ a, (16b)

with s`m = `/(2` + 1). Here ` = 1, 2, 3, . . ., and −` ≤ m ≤ `.
With this basis function, one can obtain

〈χ`m|z〉 = z`m =
∫
dErη(Er)∇z · ∇χ`m = êz ·

∫
dErη(Er)∇χ`m

= −êz ·
∫
dErχ`m∇η(Er) =

∫
dEr(êz · r̂)δ(r − a)χ`m

=

∫
dΩa2 cos θY`m(θ, φ)

1
√
a`

=

(
4πa3

3

)1/2
δ`1δm0, (17)

which is noted to be independent of ER. In the above we have used
the fact that ∇η(Er) = −δ(r − a)r̂ , where r̂ means a unit vector
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along the outward radial direction. The matrix elements can also
be similarly obtained as

Γ̂`′m′,`m(0− ER) = 〈χ`′m′(Er − ER)|Γ̂ |χ`m(Er)〉

= s`m〈χ`′m′(Er − ER)|χ`m(Er)〉

= s`m

∫
dErη(Er)∇χ`′m′(Er − ER) · ∇χ∗`m(Er)

= s`ma2
∫
dΩχ`′m′(Ea− ER)r̂ · ∇χ∗`m(Ea), (18)

where integration by parts has been performed in going from the
third to the fourth line, using again∇η(Er) = −δ(r−a)r̂ . Thematrix
elements may be explicitly evaluated with the aid of the following
formula:

1

|Er − ER|`′+1

∫
Y ∗`m(ΩEr)Y`′m′(ΩEr−ER)dΩEr

= (−1)`
′
+m′

[
(2`+ 1)(2`′ + 1)

(`+m)!(`−m)!(`′ +m′)!(`′ −m′)!

]1/2
×

r`

R`+`′+1
(`+ `′ +m−m′)!

2`+ 1

× Pm
′
−m

`+`′
(θER) exp[i(m

′
−m)φER]. (19)

Some explicit expressions for the matrix elements can be found in
Ref. [19].
We return to Eq. (13) and note that as the right-hand side is

independent of ER, we can Fourier-transform the whole equation to
the wavevector domain as∑
`′,m′

(
δ``′δmm′ −

1
s
Γ̂`m,`′m′(EK)

)
A`′m′(EK) = z`mδEK ,0. (20)

Here the EK vectors are the reciprocal wavevectors in the first
Brillouin zone of the periodic structure. In the form of Eq. (20), it
is clear that only the EK = 0 component has a nontrivial solution.
That is, with the right hand side being non-zero only for EK = 0, all
A`m(EK) = 0 for EK 6= 0, because the determinant of the matrix on
the left hand side of Eq. (20) is always non-zero, as the eigenvalues
of the Γ̂ operator are always between 0 and 1, whereas the value
of s as defined by Eq. (5b) can not be in that interval. It follows that
we only need to solve the following equation for the homogenized
(EK = 0) operator:∑
`′,m′

(
δ``′δmm′ −

1
s
Γ̂
(0)
`m,`′m′

)
A`′m′ = z`m, (21a)

where

Γ̂
(0)
`m,`′m′ =

∑
ER

Γ̂`m,`′m′(ER), (21b)

i.e., a summation of thematrix elements over all the lattice vectors.
However, for the purpose of evaluating the effective ε̄zz , it is not
necessary to solve Eq. (21a). Instead,we candirectly obtain ε̄zz from
the eigenvalues and eigenfunctions of the Γ̂ (0)

`m,`′m′ matrix. That is,
if we express the (global) eigenfunction of the Γ̂ (0) operator as
ϕ
(0)
u =

∑
u ϕ

(u)
`mχ`m with the eigenvalue su, then∑

`′,m′

(
δ``′δmm′ −

1
su
Γ̂
(0)
`m,`′m′

)
ϕ
(u)
`m = 0. (22)

From Eq. (11) we have

ε̄zzcol = ε`

(
1−

1
V

∑
u

|〈z|ϕu〉|2

s− su

)

= ε`

1− 1
V

∑
ER,`,m

∑
u

|〈z|χ`m〉〈χ`m|ϕ
(0)
u 〉|

2

s− su


= ε`

(
1−

N
V

∑
u

∑
`m

|z`mϕ
(u)
`m |

2

s− su

)

= ε`

(
1− pcol

∑
u

|ϕ
(u)
10 |

2

s− su

)
(23)

where the summation over ER is noted to give a factor of N , since
both z`m and ϕ

(u)
`m are independent of ER. The resulting V/N yields

the unit cell volume. By recalling the result of Eq. (17) for z`m, we
arrive at the final answer shown above.
Two technical points should be noted. First, the summation

over the lattice vectors in Eq. (21b) should be carried out by using
the Ewald summation method, since otherwise the convergence
can be a problem. Second, there has to be a slight separation
between the microspheres, in order to avoid the summation over
very large values of angular momentum index ` that would be
needed otherwise.
In what follows, we shall also treat the cases of singly or

doubly coated microspheres, which need only slightly modified
computational formalisms. For example, instead of the f`(r)
(of the basis function) as given by Eqs. (16a) and (16b), the
radial component of the basis function would be slightly more
complicated in the coated cases. In addition to the summations
over (`,m), there is also the coating layer index which needs to be
added. These details will be treated as self evident and therefore
not further detailed here.

3. Predictions and comparison with experiments

By using the spectral representation and the effective dielectric
constant formulation, quantitative predictions becomepossible for
the microstructure, shear modulus, yield stress, and other related
characteristics associated with an ER fluid comprising uniform-
sized microspheres dispersed in an insulating liquid. In particular,
upper bounds can be derived for the shear modulus and the yield
stress.

3.1. Ground state microstructure

For uniform-sizedmicrospheres, the lowest energy state should
correspond with a periodic microstructure which maximizes the
overall (real part of the) zz component of the effective dielectric
constant. By calculating the effective dielectric constants for the six
structures of body centered tetragonal (BCT), face centered cubic
(FCC), hexagonal close-packed (HCP), body centered cubic (BCC),
simple cubic (SC), and diamond, it was found that at any fixed
concentration of solidmicrospheres, themagnitude of the effective
dielectric constant always arranges themselves in the above
decreasing order, with FCC and HCP a very close second to the
BCT [7,13,19]. The calculated values of ε̄zz for the various structures
are shown in Table 1, at two ratios of εs/ε` = 10 and 800. For
comparison, results using just the dipole approximation are also
shown.
In Table 1, it should be noted that the values of the effective

dielectric constants given are those averaged over the whole
sample, as given by Eq. (12). That is, for the effective dielectric
constant values inside the close-packed columns, the FCC value is
in fact slightly larger than that for the BCT, owing to the higher
packing density (higher pcol). However, when averaged over the
whole sample in accordance with Eq. (12), the BCT wins slightly,
mainly because of BCT’s lower pcol (than the FCC) and hence a larger
value for p/pcol (and thereby givingmore weight to its ε̄zzcol). It turns
out that BCT always wins slightly, regardless of the values of the
material constants and solid volume fractions.
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Table 1
The exact effective dielectric constants of several periodic structures, compared
with that in the dipolar approximation. The separation between the spheres is
5× 10−3 in terms of the sphere radius, volume fraction of particles is 0.2.

εs/ε` Structure
BCT FCC HCP BCC SC Diamond

10 Exact 2.167 2.156 2.156 2.043 1.911 1.627
Dipole 2.031 1.994 1.995 1.905 1.734 1.601

800 Exact 5.173 5.129 5.129 4.205 3.518 1.976
Dipole 3.376 3.188 3.194 2.798 2.230 1.897

3.2. Structural transition under crossed electric and magnetic fields

BCT is the ground state microstructure for the microspheres
inside the solid columns formed under an external electric field.
This prediction remains unchanged for any ratio of the solid and
liquid dielectric constants, and also remains true if the electrostatic
interaction between the solid microspheres is treated only within
the dipole approximation.
An interesting phenomenon occurs if the microspheres are not

only responsive to the electric field but also to the magnetic field
(e.g., by using Ni coating so that eachmicrosphere can have a small
permanent magnetic moment), then under crossed electric and
magnetic fields there can be a structural Martensitic transition in
the ground state structure, from BCT to FCC [15]. Physically this
is based on the minimization of the electrostatic energy plus the
magnetic energy, both treated in a similar fashion. As themagnetic
field increases and its energy becomes comparable to that of the
electric energy, the ground state structure inevitably would tend
towards a more symmetric structure along the two directions of
the electric and magnetic fields, hence the FCC structure.

3.3. Experimental verification of the ground state structure predic-
tions

Experimentally [15], microspheres with a glassy core of 34 ±
2µmweremultiply coated by a 2µm layer of Ni, a 1.5µm layer of
lead zirconate titanate (PZT), another 1 µm layer of Ni, and finally
1µmlayer of TiO2. The overall diameter of themicrospheres is thus
45 ± 2 µm. A cross-sectional SEM picture of the coated spheres
is shown in Fig. 3(a). The apparent size variation is caused by a
deviation of the spheres’ centers from the cutting plane. A more
detailed picture of the coatings is shown in Fig. 3(b). The magnetic
response of these multiply-coated microspheres is demonstrated
in Fig. 3(c), inwhich themicrospheres are shown to stagger upright
under the influence of a small magnetic stirrer.We first investigate
the ground state microstructure under an electric field of E =
2 kV mm−1 when themicrospheres were dispersed in epoxy. After
solidifying the epoxy matrix, the sample was cut along the (001)
and (110) planes and visualized with SEM images. They are shown
in Fig. 4(a) and (b) as clear-cut evidences for the BCT structure.
A separate sample with similar composition was subsequently

prepared and subjected to the same electric field but a varying
magnetic field. The structural transition was monitored by
measuring the small dielectric constant variation in the direction
perpendicular to both the electric and magnetic fields. A clear
minimum in the dielectric constant was observed in every case,
between 50 G and 80 G. When the magnetic field is larger than
that, the dielectric constant returns to that observed at the low
field limit, indicating that the BCT structure is now established
along the magnetic field direction instead of the electric field
direction. However, in the interesting region of the minimum,
we had obtained many cross-sectional micrographs by freezing in
solid epoxy the configurations at variousmagnetic field values, and
cutting the resulting samples [15]. The results are shown in Fig. 4(c)
and (d). They indicate a square lattice in the (011) plane (the FCC
a

b c

Fig. 3. (a) Cross-sectional SEM picture of the coated spheres. The apparent size
variation is caused by a deviation of the spheres’ centers from the cutting plane. The
arrow points to a circular region detailed in (b), which shows a detailed thickness
of the four coatings. From the inside out: 2µmNi, 1.5µm PZT, 1µmNi, and finally
1 µm TiO2 . (c) The coated EMR spheres under the influence of a small magnetic
stirrer.

a

c

b

d
(001)

(011)

(110)

(110)

Fig. 4. (a)–(b) BCT structure formed by multiply-coated microspheres under an
electric field (2 kV/mm). The structure is frozen in epoxy and visualized through
cross-sectional SEM micrographs. (c)–(d) are the signatures of a FCC structure
formed by the same multiply-coated microspheres under crossed electric field
(2 kV/mm) and magnetic field (54 G).

{100}) and a hexagonal lattice in the (110) (the FCC {111}), both the
signatures of a FCC structure.
The direct observation of the ground state microstructure and

its Martensitic transition under crossed electric and magnetic
fields clearly demonstrates the appearance of self-organized
microstructures under external field(s), as predicted from energy
considerations. They also confirm the structural predictions of the
variational approach.

3.4. Shear modulus and yield stress

From the known ground statemicrostructure, one can calculate
the shear modulus and yield stress by first defining the shear
distortion. This is shown in the inset to Fig. 5. Here θ , the angle
of distortion relative to the external E field, is the strain variable.
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Fig. 5. Calculated stress, in units of Pascal, plotted as a function of strain, i.e., the tilt
angle θ as defined in the inset. The dashed line indicates the unstable regime. The
maximum stress is defined as the static yield stress. Here the curve is calculated
with ελ = 2.7, εs = 8.4 + 0.43i, the volume fraction of spheres is 22%, and the
applied field is 1.3 kV/mm.

For the BCT lattice, shearing in the direction perpendicular to the z
axis means not only a tilt away from the electric field direction by
an angle θ , but also a distortion in the lattice constants c and a given
by c/R = 2/ cos θ , a/R = [8 − (c2/2R2)]1/2. Consequently, under
shear the volume fraction of solid spheres in the BCT structure is
also θ dependent. For a small θ , ε̄zz(θ)may be expanded about its
optimal value as

Re
[
ε̄zz(θ)

ε`

]
= Re

[
ε̄zz(0)
ε`

]
−
1
2
µθ2 + · · · , (24)

where µ denotes the shear modulus. For finite distortions, the
effective dielectric constant can again be calculated using the
spectral representation, leading to an energy as a function of,
E(θ). By definition the stress is given by dE(θ)/dθ . A numerically
evaluated stress versus strain curve [13] is shown in Fig. 5. It is seen
that at a small strain, the stress varies linearlywith strain. The slope
of the linear variation is precisely the shearmodulus. Also, the peak
of the stress–strain curve corresponds to the yield stress (at the
position of maximum strain) beyond which the system becomes
unstable.
What happens beyond the peak of the stress–strain curve is in

the domain of ER fluid dynamics, to be treated in Section 6.

3.5. Experimental verification of yield stress predictions

To experimentally verify the yield stress prediction, we utilize
the relaxational effect of the dielectric constant that would
generally appear at finite frequencies (of the applied electric
field) [13,16]. It has been widely known in the field of ER fluid
research that any presence of water in the sample can enhance the
ER effect, sometimes dramatically. Water is also known to have
a relaxational dielectric constant that can be strongly frequency
dependent. In addition, water has a fairly large real part of the
dielectric constant, and it was suspected that the early detected
ER effect was due to the presence of water. However, water can
disappear starting at temperatures > 60 °C, and hence can cause
unreliable performance. The ER fluids produced after the 1980’s
have been especially noted to avoid any presence of water, e.g., in
our experiments on visualizing the ground state microstructures,
all samples were heated to 120 °C for 24 h prior to measurements.
However, the role of water has always been intriguing, and a
systematic study of the role ofwaterwould not only be informative
in relation to the theory predictions, but also may be enlightening
in the search for a type of colloids with an enhanced ER effect.
Three samples were prepared, consisting of 1.5 µm diameter
microspheres dispersed in silicone oil. The samples were first
baked to remove any trace of water, and then measured amounts
of 5 vol.% (denoted sample 1), 8 vol.% (sample 2), and 11.4 vol.%
(sample 3) water were introduced. With a cell consisting of two
parallel plate electrodes, the dielectric measurements of the ER
fluids were performed by an HP4284A LCR meter in a frequency
range of 20 Hz to 100 kHz. The static yield stress was measured by
using a standard parallel plate torsional device with a root-mean-
square (RMS) electric field of 510V/mmapplied across the ER fluids
sandwiched between the two parallel plates. The lower plate was
rotated slowly, dragging the top plate with a torque, which was
connected via a torquemeter to the top plate. The static yield stress
was read out when slipping occurred between the two plates, after
subtracting off the zero-field value (which is about 1% of the high-
field value). The static yield stresswas observed to have an accurate
E2 field strength dependence. The real and imaginary parts of the
effective dielectric constants of the three samples were measured
as a function of frequency [16], shown as symbols in Fig. 6. These
data were used to determine the (frequency dependent) effective
dielectric constants of the solid particles and the fluid, by assuming
the water to coat the glass microspheres, with the excess water
dispersed in silicone oil. Excellent fittings can be obtained, shown
as the solid lines in Fig. 6.
With the material parameters thus determined, we compare

the measured and predicted yield stress of the three samples in
Fig. 7, again as a function of the applied electric field frequency.
A reasonably good agreement is seen. Thus yield stress can be
quantitatively predicted, provided the correctmaterial parameters
and geometric information are supplied.
Besides verifying the yield stress predictions, this study also

shows that even a small amount of water can have a dramatic
effect. This is possible only if the water coats the solid particles,
or inserts itself in the region of two touching microspheres. The
thought that led to the discovery of the giant electrorheological
effect, described below, is that if the OH group can somehow be
fixed on the solid microspheres, then the dramatic effect seen here
may be usefully utilized to enhance the ER effect, with no adverse
consequences.

3.6. Upper bounds

A particularly important result from the effective dielectric
constant formulation is the upper bounds to the shear modulus
and yield stress. This result can in fact be intuitively appreciated
from Eq. (11). Since both the shear modulus and yield stress are
related to the real part of the effective dielectric constant, the upper
bounds to these quantities will be determined by the divergence
of ε̄zz . From Eq. (11) this can only happen when the denominator
on the right hand side vanishes. From the definition of s and the
fact that su is always real and between 0 and 1, the divergence
of ε̄zz would happen when both s and su approach either 0 or
1. Here we present only the case of the 0 limit. To obtain the
physical upper bounds, we let εs → ∞ so that s → 0. We also
note that su would approach zero only when the spheres touch.
Hence we specify a (small) separation, δ, between the surfaces
of the neighboring spheres, and evaluate the shear modulus and
yield stress as a function of the ratio δ/R, where R is the sphere
radius. The upper bounds thus obtained are 1.9 (R/δ) for the shear
modulus, and 1.38

√
R/δ for the static yield stress, both in units of

the energy density ε`E2/8π . For δ = 1 Å (atomic separation) and
R = 20µm, we get 15,120(ε`E2) for the maximum shear modulus
and 24.6(ε`E2) for the maximum yield stress. If ε` = 2.5 and
E = 1 kV mm−1, these expressions translate into 5 MPa and 8 kPa,
respectively. It should be noted that both upper bounds increase
monotonically with the size of the microspheres, and that the unit
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Fig. 6. The real and imaginary parts of effective dielectric constants for the three samples plotted as a function of frequency. The symbols represent the experimental
measurements and lines are fitted theoretical calculations. The free material parameters of the model [16] are determined by the fittings.
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Fig. 7. The measured (symbols) and calculated (lines) static yield stress plotted as
a function of frequency. From bottom to top: sample 1, sample 2, and sample 3, in
the order of an increasing amount of water.

is quadratic in the electric field. Both are the consequences of the
induced polarization mechanism. In particular, as the electrostatic
energy density in a polarizablemedium is generally given by−EP ·EE,
where EP is the dielectric polarization, then EP ∝ EE directly yields the
quadratic dependence. The

√
R dependence for the upper bound of

the static yield stress may be understood heuristically as follows
from the capacitance between two spheres, which diverges as
`n(R/δ).
Under an applied electric field EE along the axis joining the

centres of the two spheres, the leading order term of the free
energy density is proportional to the capacitance. If now we apply
a shear perpendicular to the electric field, the line segment joining
the centers of the two spheres will both be tilted at an angle θ
with respect to the electric field direction, as well as lengthened.
If the new separation is denoted by d, then (2R + d) cos θ =
2R + δ, so that d ≈ δ + Rθ2 for a small θ . Within the small angle
approximation, the shear stress is proportional to −(∂C/∂θ) ∝
(R/d)[(d − δ)/R]1/2, which is noted to have a peak value given by
the condition d = 2δ, so that the static yield stress∝ (R/δ)1/2.

3.7. Experimental verification of the upper bound prediction

To verify the particle size R and δ dependencies of the yield
stress upper bound, doubly-coated microspheres were fabricated
with uniform-sized glassy core and nickel and titania (TiO2)
outer coatings, using sequentially the electroless plating (for the
nickel coating) and sol–gel (for the titania coating) methods. Two
different sizes of the core glass microspheres, 1.5 µm and 50 µm
in diameter, were used. A cross-sectional picture of the multiply-
coated spheres is shown in Fig. 8(a–c). Here the nickel coating
a

c

b

Fig. 8. Cross sectional electronmicrographs for (a) 1.5µmnickel coated, (b) 1.5µm
doubly coated, and (c) 50 µm doubly coated particles. The scale bar is 100 nm and
25 nm for (a), (b), and (c), respectively. While in (a), the metal/glass interface is
clearly visible, diffusion of Ni atoms, probably from the heating process, blurred
this boundary, as shown in (b) and (c). TheTiO2 coating thickness is seen to be in
the range of 10 to 30 nm for (b) and 25 to 60 nm for (c).

serves the purpose ofmaking themicrospheres polarizable enough
so that we can take s to be nearly zero, and the silica coating serves
the purpose of setting a value for δ. In Fig. 9(a,b) we compare
the measured yield stress values (symbols) with those calculated
from the effective dielectric constant formulation. The increased
size of the particles is clearly seen to increase the yield stress,
in approximately the square-root ratio as predicted by the upper
bound expression. In addition, the absolute values of themeasured
yield stress are also well-accounted for by the calculations
using approximate values of the titania coating thicknesses. For
comparison, we have also measured and calculated the yield
stresses for pure glass spheres, and thosewith just titania coatings.
Both are orders of magnitude smaller (as seen by the lines lying
close to the horizontal axis). The dashed line is the calculated value
for pure titania spheres of similar size. It is also much smaller. The
simple physical picture that emerges from these results is that (1)
ER yield stress is closely related to the electrostatic energy of the
system, and (2) for a given applied electric field, the electrostatic
energy can be maximized by field distribution and dielectric
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Fig. 9. The measured (symbols) and calculated (lines) static yield stress of ER fluid using (a) 1.5 µm doubly coated particles, (b) 50 µm doubly coated particles. From the
vertical scales it is seen that the larger particles exhibit a larger yield stress in roughly the square-root of the size ratio. For comparison, we have also shown the calculated
yield stress for solid TiO2 particles of the same sizes (dashed lines), as well as the measured yield stress for pure glass spheres (almost invisible as the open squares on the
horizontal axis) of the same size, as well as the measured yield stress for glass spheres coated just by TiO2 , without the Ni (black diamonds on the horizontal axis) of the
same size.
constant of thematerials. Themetallic coating of the doubly-coated
microspheres limits the field to the dielectric areas occupied by
the titania coating and the silicone oil. The thin titania coatings
ensure small separations, thus producing high internal fields. The
enhanced ER effect is the result.
The doubly coated glassy microspheres are in a sense ‘‘ideal’’

for the ER effect. However, the requirement of large sphere size
is not optimal from the applications point of view, since large
microspheres also tend to sediment, unless the density can be
matched with that of the fluid.

3.8. Anisotropy and nonlinearity of the effective dielectric constant

Since the theoretical approach is based on the effective dielec-
tric constant optimization, it is important to check experimentally
if the dielectric constant indeed increases and displays anisotropy
under the application of an electric field. However, measurement-
wise it is difficult to determine the dielectric constant along the
electric field direction, especially when the applied field is fairly
large. In order to overcome this difficulty, we have utilized the sim-
ilarity in themicrostructure under an electric field with that under
a magnetic field. For this experiment, special particles were pre-
pared whereby silica spheres 35± 3 µm in diameter were coated
with an inner Ni layer and an outer dielectric layer, such as lead
zirconate titanate (PZT) or TiO2, formed by using electroless plat-
ing and sol gel processes, respectively. Themicrostructures formed
by applying a magnetic field are shown in Fig. 10. The dielectric
constants along the z (magnetic field direction) and x directions
(ε̄zz and ε̄xx), measured by an LRC meter, are shown in Fig. 10 [19].
It is seen that whereas the zz component of the effective dielec-
tric constant displays an increasing trend with the magnetic field,
just as expected, the xx component displays a slight decrease. These
trends are independent of whether the outer coating is PZT or TiO2.
The theoretical predictions of the asymptotic dielectric constant
values, again obtained by using the spectral function approach, are
shown in Table 2. Here the inputs to the calculations are deter-
mined by the values of the real and imaginary parts of the effec-
tive dielectric constants when the system is isotropic (H = 0). It is
seen that reasonably good agreement is obtained. These theory-
experiment comparisons thus provide strong support to the
understanding of the ER mechanism as the result of induced po-
larization, made quantitatively predictable through the effective
dielectric constant formulation with the Bergman–Milton spectral
representation.
a

b

H (G)

H (G)

Im
 (

Fig. 10. Dependences of real (a) and imaginary (b) parts of the dielectric constant
on applied magnetic field strength. Here the volume fraction is 0.27, and the
frequency of the LCR meter is fixed at 1 kHz.

4. The giant electrorheological effect

There is a basic difference between the maximum (dimension-
less) electric susceptibility of a collection of permanent dipoles
and a system of polarizable particles, which may be heuristically
quantified as follows. For a polarizable particle, the polarizability
α = βa3 has a maximum value given by α = a3(β = 1), attained
by setting εs →∞ (here we exclude from our consideration neg-
ative εs values). If we take the largest possible number density of
the polarizable particles,N = (4πa3/3)−1, then the dimensionless
χ = Nα has the maximum value of 3/4π = 0.239. In contrast,
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Table 2
Experimental and theoretical results of the real and imaginary parts of ER fluid
dielectric constants measured along the z and x directions for the random and
structured cases.

Structure Theory Experiment
Re (ε̄) Im (ε̄) Re (ε̄) Im (ε̄)

Random Fitted Fitted 4.95 0.13
PZT coating zz 5.67 0.23 5.29 0.14

xx 4.75 0.11 4.94 0.12

Random Fitted Fitted 4.26 0.26
TiO2 coating zz 4.56 0.37 4.44 0.28

xx 4.15 0.23 4.25 0.25

for a collection of molecular dipoles, the polarizability arises from
the competition of thermal Brownian motion and the alignment
effect of the applied electric field. The standard calculation leads to
α = µ20/3kBT , whereµ0 denotes the molecular dipole moment, kB
the Boltzmann constant, and T the temperature. If we let T be room
temperature and µ0 be one electronic charge separated (from its
opposite) by 1Å, thenmultiply that byN = (molecular volume)−1,
we obtain χ ∼ 4–50, depending on what we take for the molecu-
lar volume. The fact that there can be at least one order of magni-
tude difference in the maximally achievable values is easy to see.
Of course, the molecular dipoles tend to form quadrupolar pairs,
hence getting a dense collection of free molecular dipoles is not a
simple matter, yet the potential is there.

4.1. The giant electrorheological (GER) effect — particle structure and
behavior

The study of the effect of water on the ER effect prompted an
attempt to fix OH groups on solid particles. While that was not
successful, it led to the discovery of urea-coated nanoparticles of
barium titanate oxalate (NH2CONH2⊕BaTiO(C2O4)2) which, when
dispersed in silicone oil, exhibits ER effect orders of magnitude
larger than those based on the induced polarization mechanism,
exceeding the upper bound value by a large amount [20]. The
GER effect also displays different electric field dependence of the
yield stress, as well as the opposite dependence on the size of the
particles [21]. Thus the GER fluids represent a new paradigm.
In Fig. 11(a), a TEM picture shows that the structure of the GER

particles consists of a∼50 nm core of barium titanate oxalate, with
a 5 nm coating of urea. In Fig. 11(b), an optical microscope image
shows the column formation when an electric field was applied.
In Fig. 11(c), a TEM picture shows that under an electric field, the
coatings of the nanoparticles are significantly deformed, indicating
a degree of softness in the coating.
In Fig. 12, themeasured yield stress and current density (shown

in the inset) is plotted as a function of the applied electric field. A
prominent feature is the near-linear dependence of the yield stress
on the electric field. In accordance with the earlier discussion,
this is only possible if the yield stress arises not from induced
polarization, but rather from the saturation polarization of some
permanent molecular dipoles, so that in the expression−EP0 · EE the
polarization is a constant. The current density dependence on the
electric field follows a so-called Poole–Frenkel mechanism, where
the current density `n J ∝

√
E is a signature of charging carriers

generated through a breakdown of the dipoles under an electric
field. Here the

√
E behavior is a signature of activation barrier

lowering by an applied field, for ions held by the Coulomb potential
of the counterions, i.e., current density is due to the breakdown of
the molecular dipoles.
4.2. A phenomenological model of the GER effect

The phenomenological GER model is based on the following el-
ements: (1) the molecular dipoles of urea can form aligned dipo-
lar layers in the contact region between two coated nanoparticles,
under a moderate electric field of 106–107 V/cm (shown schemat-
ically in Fig. 13(a)); (2) the equilibrium contact state is represented
by the balance of the (attractive) electrostatic forcewith the (repul-
sive) elastic force; (3) the elastic deformation of two coated spheres
in contact is given by the Hertzian solution; (4) there is an electric
field enhancement effect at the contact region, with an enhance-
ment factor of∼102 (estimated numerically by using the finite el-
ement method); (5) the shear stress is defined as the derivative
of the total energy with respect to strain (which is just the shear
distortion angle); and (6) the area of the contact region decreases
under shear, and the yield stress is given by the stress value at the
point of separation (zero contact area). This is illustrated schemat-
ically in Fig. 13(b). In the phenomenological model, there is only
one adjustable parameter, given by the deformation modulus of
the coating. It turns out that the value obtained from fitting is∼0.1
GPa, similar to that for a liquid and agrees with the TEM observa-
tion that the coatings seem to be soft.
The predictions of the model are in good agreement with

measured results, as seen from the solid lines in Fig. 12. In
particular, the linear dependence on the applied electric field is
a direct reflection of the surface saturation polarization. Another
prediction of the model is that since the effect owes its origin to
surface saturation polarization, more surface area (hence smaller
particles) would enhance the GER effect. This turns out to be the
case, opposite [21] to the observed size scaling behavior of the
induced polarization mechanism as described earlier.
How does the surface saturation polarization come about? That

is, what are themicroscopic elements contributing to the statistical
mechanics of the surface-aligned dipolar layers?While the end-to-
end interaction between the dipoles are electrostatically favorable,
side-to-side interaction between the dipoles is not. Hence to
have two layers of aligned dipoles there must be some other
contributing factors, such as the external electric field or chemical
interactions, that also participate. These issues represent topics
currently under active investigation.

5. Onsager principle and the dynamic equations of motion

In this section we start our consideration of dynamics of
nano/microparticles suspension under an applied electric field.We
would like to derive the hydrodynamic equations of motion for
the ER fluid so that efficient numerical simulations are possible.
For this purpose, the Onsager principle is perhaps the most useful.
The Onsager principle of minimum energy dissipation [29–32]
is about the rules governing the optimal paths of deviation and
restoration to equilibrium. Similar variational principles were
used or developed by Helmholtz [33], Rayleigh [34], Edward and
Freed [35], and Doi [36]. As a variational principle, it is useful
as an approach for deriving the equations of motion (as well
as for the boundary conditions), but not for determining the
global dissipative state. The latter is in contrast to the principle of
minimum free energy, which is often used to determine the global
ground state of matter.

5.1. Onsager variational principle — statistical mechanical underpin-
nings

To see how the principle of minimum energy dissipation arises,
it is instructive to use a one-variable example for illustration.
Let α be the displacement from equilibrium. In an overdamped
dissipative system, the dynamicsmay be described by the Langevin
equation
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Fig. 11. Images of nanoparticles in GER suspensions. (a) TEM image of coated nanoparticles. Urea coatings are clearly seen. (b) Opticalmicroscope image of a sample prepared
in epoxy, solidified under an applied field E of 2 kV mm−1 . Columns aligned along the field direction are visible. (c) TEM image of a section of the column shown in (b). The
arrows indicate one of the flattened interfaces.
Fig. 12. Static yield stress plotted as a function of applied electric field for two
solid concentrations. Symbols denote the experiment; solid lines are theory. Inset:
logarithm of the current density J plotted as a function of

√
E. The dashed straight

lines serve to delineate the relationship `nJ ∼
√
E, indicating the mechanism of

activation over the Coulomb barrier (the Poole–Frenkel effect). Note that at a very
moderate field of 1000 V mm−1 the linear behavior of the yield stress is already
established, indicating that a saturated polarization layer contributes to the GER
effect.

ηα̇ = −
∂F(α)
∂α
+ ξ(t), (25)

where α̇ denotes the rate of change of α, η denotes the friction
coefficient, F(α) is the relevant free energy, and ξ(t) is the white
noise with a zero mean, satisfying the correlation 〈ξ(t)ξ(t ′)〉 =
2ηkBTδ(t−t ′), where kB denotes the Boltzmann constant and T the
temperature. The left hand side of Eq. (25) is simply the dissipative
force, which is balanced by the conservative force plus a stochastic
force on the right.With thewhite noise ξ(t) term on the right hand
side of Eq. (25), the dynamics of α are no longer deterministic and
its trajectory is best described by a probability density P(α, t) that
is governed by the Fokker–Planck equation

∂P
∂t
= D

[
∂2P
∂α2
+
1
kBT

∂

∂α

(
∂F
∂α
P
)]
, (26)

where the diffusion constant D satisfies the Einstein relation ηD =
kBT . It is simple to verify that the stationary solution of Eq. (26)
is given by the Boltzmann distribution Peq ∝ exp[−F(α)/kBT ],
i.e., α likes to be in the state of minimum free energy. The dynamic
transition probability for α at t to α′ at t +1t is given by

P(α′, t +1t|α, t) =
1

√
4πD1t

exp
[
−
(α′ − α)2

4D1t

]
× exp

[
−
F(α′)− F(α)
2kBT

]
, (27)
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Fig. 13. Illustration of the phenomenological model with calculated results.
(a) Upper left: schematic picture of our model, consisting of two coated spheres,
each with a 50-nm diameter core and a 5-nm coating (both with ε = 60). The gap,
with width w,has ε = 2 (for silicone oil). The solid curve shows the calculated
interaction energy divided by µ2 between two pairs of nearest-neighbour surface
dipoles, each with µ = 4.6 Debye and separated laterally by 4.5 Å (ε = 1 between
the dipoles), when w increases from 2 Å. In (b), the stress numerically calculated
from the finite element method, at an electric field of 2 kV mm−1 , is plotted as a
function of the strain. The yield stress point corresponds to the point of separation
between the two spheres.

for α′ in the vicinity of α and small 1t . By using the Einstein
relation, the two exponents can be combined:

P(α′, t +1t|α, t) =
1

√
4πD1t

exp
[
−
A
2kBT

]
, (28)

where

A =
η(α′ − α)2

21t
+ [F(α′)− F(α)] ≈

[
η

2
α̇2 +

∂F(α)
∂α

α̇

]
1t (29)
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is the quantity to be minimized if we want to maximize the
probability of transitionwith respect to α′. For a small1t , it is seen
that instead of minimizing Awith respect to the target state α′, the
same is achieved by minimizing with respect to the rate α̇. Indeed,
if we carry out the simple minimization on the right hand side of
Eq. (29), we obtain the force balance equation

ηα̇ = −
∂F(α)
∂α

, (30)

i.e., the Langevin equation without the stochastic force term. This
is reasonable, since the stochastic force has a zeromean, so Eq. (30)
is true on average.
Thus we learn from the above that

(a) there can be a variational functional, of which the quantity A
is the one-variable version, which should be minimized with
respect to the rates;

(b) the result of such minimization would guarantee the force
balance on average; and

(c) the minimization would also yield the equations of motion
and the related boundary conditions, which represent themost
probable course of a dissipative process.

The last statement essentially guarantees that in the statistical
sense, themost probable course will be the only dynamic course of
action observed macroscopically.
For the general case ofmultivariables, the variational functional

can be simply generalized from Eq. (29) as

A =
1
2

∑
i,j

ηijα̇iα̇j +

n∑
i=1

∂F(α1, . . . , αn)
∂αi

α̇i, (31)

where in the case of αi’s being field variables, the summation
should be replaced by integrals, and partial derivatives by
functional derivatives. In Eq. (31) the dissipation coefficient matrix
elements ηij must be symmetric with respect to the interchange of
the two indices, as shown byOnsager [29,30] based onmicroscopic
reversibility.

5.2. Application of the Onsager principle: Simple examples

Consider the equation ofmotion for the viscous, incompressible
fluid. In that case the viscous dissipation is simply given by

Rvis =
∫
dEr
[η
2
(∂ivj + ∂jvi)

2
]
, (32)

where η is the viscosity coefficient. There is no free energy (time
variation) term in this simple example. Hence the variational
functional A = Rvis, which should be minimized with respect
to ∂v, together with the incompressibility condition ∇ · Ev =
0 (by using the integration by parts, minimizing w.r.t. ∂v is
equivalent to minimizing w.r.t. v, which is followed below). That
can be accomplished by using the Lagrange multiplier λ. A simple
calculation yields

− 2η
∫
dEr
[
∂j
(
∂jvi + ∂ivj

)
δvi
]
−

∫
dEr [∂iλδvi] = 0, (33)

which leads to the Stokes equation

−∇p+ η∇2Ev = 0, (34)

where we have identified λ = −2p. This derivation of the
Stokes equation from the minimization of viscous dissipation
(with the incompressibility constraint) was first recognized by
Helmholtz [33]. The inertial effect can be included by requiring
momentum balance, in which case we obtain the Navier–Stokes
equation

ρ[∂Ev/∂t + (Ev · ∇)Ev] = −∇p+ η∇2Ev. (35)

There is also a boundary term in the variation of (32), given by
the surface integral of the tangential viscous stress −η∂nvτ (here
the subscript n denotes the normal component to the boundary,
and τ the tangential component), that has been neglected in
Eq. (33). This brings into focus the issue of the hydrodynamic
boundary condition(s), which is (are) necessary for the solution
of the equations of motion. As we know, the non-slip boundary
condition is generally the rule at the fluid–solid interface. However,
as the solid wall and the fluid are all composed of molecules, albeit
with different intermolecular interactions, it is natural to assume
the existence of some friction at the fluid–solid interface, with the
same form as Eq. (32). Such an assumption does not necessarily
rule out the non-slip boundary condition, but may approach it as
a limit. We use a discretized version of (32) in order to adapt the
viscous dissipation expression to the fluid–solid boundary, with
R(S)vis =

∫
dS[(η/1z)(1vx)2], where dS = dEr/1z is the surface

differential. Since1vx is the relative (tangential) velocity between
the fluid layer and the solid boundary, it is preciselywhatwewould
call the slip velocity. That directly suggests the form of frictional
dissipation rate at the fluid–solid interface to be

Rslip =
∫
dS[β(vslipτ )2], (36)

where the slip coefficient β has the dimension of [viscosity]/
[length]. Hence a slip length may be defined as ls = η/β . The non-
slip boundary condition is approached by letting ls → 0.
If we take the variation of (36) and combine this surface slip

dissipation term with the tangential viscous stress obtained from
the boundary term in the variation of (32), we obtain the boundary
condition

βvslipτ = −η∂nvτ , (37)

known as theNavier boundary condition [37], proposed nearly two
centuries ago. It is noted that if we let the slip length approach
zero so as to obtain the non-slip boundary condition, then the slip
velocity must be zero as well in order for the left hand side of
Eq. (37) not to diverge. Thus the non-slip boundary condition is a
limiting case of Eq. (37).
By extending the Onsager principle to the case of immiscible

fluids flow (in which case one must include the free energy
time variation term, arising from the fluid-fluid and fluid–solid
interfacial energies), it has been shown that a generalized Navier
boundary condition is obtained which resolves the classical
problemof themoving contact line [38,39].Moreover, the resulting
continuum hydrodynamics can yield for the first time predictions
of flow fields in quantitative agreement with molecular dynamic
simulations down to the molecular level [40]. However, since
the slip length is generally in the nanometer scale, the non-slip
boundary condition can be regarded as an excellent approximation
for macroscopic flows.
It follows from the above that the Onsager principle offers

a unified framework for the derivation of the hydrodynamic
equations of motion as well as the associated boundary conditions,
although it does not give the values for the relevant parameters,
which are specific to the details of the particular model.

6. Electrorheological fluid dynamics

Many of the ER fluid applications involve flows with moderate
to high shear-rates. While the static characteristics of the ER
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fluids can be studied successfully with the effective dielectric
constant formulation, the dynamic behavior of ER fluids can
represent a challenging topic. A direct simulation involving a
number of discrete, electrically interacting particles would be
computationally limited by the particle number [41–47], hence
difficult to apply to realistic systems. Bingham fluid [48] is often
used for the prediction of ER dynamics, inwhich the dynamic shear
stress τ induced by a Couette flow, for example, is given by the
expression τ = τ0 + ηγ̇ , where η denotes viscosity, γ̇ the shear
rate, and τ0 the threshold shear stress beyond which the fluid-like
behavior is recovered. While the Bingham model clearly captures
an essential element of the ER dynamics, it fails to account for the
often-observed shear thinning behavior and the sensitivity of ER
rheology to electrode configuration(s).
Below we describe a two-phase continuum model for the

simulation of ER fluid dynamics [49]. This model arises naturally
from the observation that under an electric field, the solid particles
phase – separate into two components — a dense column phase
and a liquid phase as shown in Fig. 2. In this model the electrical
interaction between the solid particles is treated on the basis of
(induced) dipole–dipole interaction, valid in the limit of weak
ER effect. This is in contrast to the more exact treatment of the
static properties through the effective dielectric formalism. By
regarding the number density of solid particles as a field variable,
we shall derive the equations of motion by using the Onsager
variational principle. Results obtained are noted to be in excellent
agreementwith the experiments on systemswith aweak ER effect.
In particular, it is shown that the shear-thinning behavior of ER
dynamics may be avoided by using a planar, alternate-electrode
configuration, which may have positive implications for ER fluid
applications.

6.1. Model description

Consider identically-sized solid microspheres of radius a
(=5 µm in our calculations), dielectric constant εs (=10.0 in our
calculations), and mass m (=1.2 × 10−9g in our calculations)
suspended in oil with dielectric constant ε` (=2.0 in our
calculations), viscosity η` (=10 cP in our calculations), and density
ρ` (=0.96 g/cm3 in our calculations). Due to the difference
between εs and ε`, in the presence of an external field the solid
particles will be polarized with an induced dipole moment βa3EEl
as defined by Eq. (1). Here EEl denotes the local electric field, which
is the sum of the externally applied electrical field EEext , plus the
field from all the other induced dipoles, both at the position of
the microsphere. The accurate knowledge of the latter requires
a description of the induced dipole distribution in space, which
represents the global self-consistent solution of the problem. To
facilitate the construction of the model, we first assume that the
point dipole Ep is situated at the center of the microsphere. To
prevent microspheres from overlapping in space, we introduce a
repulsive interaction potential between any two spheres i and j,
situated at Ex and Ey, respectively, as

ε0

(
a

|Ex− Ey|

)12
, (38)

where ε0 is a suitably chosen energy constant. Besides regularizing
the dipole–dipole interaction, this repulsive interaction term is
noted to also affect the viscosity of the dense colloidal (column)
phase. Second, we treat the solid particles collectively by regarding
their density n(Ex) = fs(Ex)(4πa3/3)−1 as a field variable, where
fs(Ex) denotes the dimensionless, local volume fraction of solid
microspheres. This component of our model is denoted by the ‘‘s’’
component. It is obviously not a solid, but rather a homogenized
colloidal (column) phase. Wewill model the viscosity of this dense
colloidal phase as a function of n(Ex), fitted to experimental data.
This is shown below.
One can write down the total energy for the ‘‘s’’ component,

including the interaction between the particles and between the
particles and the external field, as a functional of n(Ex):

F [n(Ex)] =
1
2

∫
Gij(Ex, Ey)pi(Ex)n(Ex)pj(Ey)n(Ey)dExdEy

−

∫
EEext(Ex) · Ep(Ex)n(Ex)dEx

+
ε0

2

∫ (
a

|Ex− Ey|

)12
n(Ex)n(Ey)dExdEy, (39)

where

Gij(Ex, Ey) =
EEI i,j
|Ex− Ey|3

−
3(Ex− Ey)i(Ex− Ey)j
|Ex− Ey|5

= E∇i E∇j
1
|Ex− Ey|

(40)

is the dipole interaction operator, and the Einstein summation
convention is followed in Eq. (39), where the repeated indices
imply summation. A variation of F with respect to n leads to δF =∫
µ(n)δndEx, where

µ[n(Ex)] = −EEext(Ex) · Ep(Ex)+
∫
Gij(Ex, Ey)pi(Ex)pj(Ey)n(Ey)dEy

+ ε0

∫ (
a

|Ex− Ey|

)12
n(Ey)dEy (41a)

is the chemical potential for the ‘‘s’’ component. It should be noted
that the first two terms on the right-hand side of Eq. (41a) may be
interpreted as−EEl · Ep, where

[EEl(Ex)]i = [EEext(Ex)]i −
∫
Gij(Ex, Ey)pj(Ey)n(Ey)dEy. (41b)

Sincen is a locally conserved variable, there is a continuity equation
for n, given by

ṅ+∇ · EJ =
∂n
∂t
+ Vs · ∇n+∇ · EJ = 0, (42)

where Vs is the ‘‘s’’ phase velocity, and EJ is a convective-diffusive
current density.
Besides the ‘‘s’’ component, the model consists of another ‘‘`’’,

or liquid, component, together with a coupling term that charac-
terizes the dissipative coupling between the two components.
Herewe first give the complete coupled equations ofmotion for

the two-phase model. Their derivation via the Onsager variational
principle will be given in the following section. Besides the
continuity equation (42), the coupled equations of motion for the
‘‘s’’ phase and the ‘‘`’’ phase are given by

ρs

(
∂ EVs
∂t
+ EVs · ∇ EVs

)
= −∇ps +∇ · τ svisc +∇ · τs + K(EV` − EVs), (43)

ρ`

(
∂ EV`
∂t
+ EV` · ∇ EV`

)
= −∇p` +∇ · τ `visc + K(EVs − EV`), (44)

with the supplementary incompressibility conditions ∇ · EVs,` =
0. It should probably be noted that EVs denotes the velocity of
the dense colloidal phase, which includes both liquid and solid
particles. Since both are incompressible, hence ∇ · EVs = 0. This is
to be distinguished from the averaged velocity of the solid particle
density, whose divergence would not be zero. In Eq. (43) ρs =
mn(Ex)+(1−fs)ρ` is the localmass density of the ‘‘s’’ phase, ps and p`
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are the pressures in the twophases,∇·τs is the force density arising
from the energy functional (39), and τ svisc = ηs(∇EVs + ∇T EVs)/2,
τ `visc = η`(∇EV` + ∇T EV`)/2 are the viscous stresses of the two
components [33]. While η` is just the fluid viscosity, for ηs we use
the concentration-dependent colloidal viscosity, to be given later.
In Eqs. (43) and (44)K is a constantwhich characterizes the relative
drag force density between the ‘‘s’’ and ‘‘`’’ components, in the
linear approximation. Hence if we consider only the Stokes drag
of the ‘‘s’’ phase by the fluid, then K = 9fsη`/2a2.
In Eqs. (43) and (44), the two crucial expressions, EJ and ∇ · τs,

are to be specified. This can be done by using the Onsager principle,
together with the forms of Eqs. (43) and (44), as shown below.

6.2. Derivation of the two-phase coupled equations of motion

For the ‘‘s’’ component of the ER fluid, the Onsager variational
functional is given by

A(EJ, EVs) = Ḟ + Φ, (45)

where

Ḟ =
∫
µ
∂n
∂t
dEx =

∫
µ
(
ṅ− EVs · ∇n

)
dEx

= −

∫
µ
(
∇ · EJ + EVs · ∇n

)
dEx

=

∫ (
∇µ · EJ + n∇µ · EVs

)
dEx, (46)

and Φ is a quadratic function of rates, given as 1/2 the energy
dissipation rate,

Φ =

∫ (
1
4
ηs[∂i(EVs)j + ∂j(EVs)i]2 +

γ

2n
J2 +

1
2
K(EV` − EVs)2

)
dEx,

(47)

together with the constraint of ∇ · EVs = 0, which can be
implemented by using a Lagrange multiplier λ. In Eq. (46), we
have used the integration by parts as well as the incompressibility
condition to reach the final desired form. In Eq. (47), γ is a frictional
coefficient related to the convective-diffusive current’s dissipation.
The form of the convective-diffusive dissipation can be simply
obtained by realizing that EJ = nEVd, where EVd denotes the drift
velocity. The dissipative force acting on a single microsphere is
γ EVd. Hence the force density is given by nγ EVd, and the energy
dissipation rate per unit volume is nγ V 2d = γ J2/n. Taking into
account the factor of 1/2 leads directly to the expression shown
in Eq. (47). The other two terms of Φ are simply the well-known
viscous dissipation and the dissipation caused by the friction
between the two components. Minimization of the variational
functional with respects to the rates (EJ, EVs) leads to the desired
expression for EJ and the Stokes equation for the ‘‘s’’ component.
That is,

EJ = −
n
γ
∇µ, (48)

and

0 = −∇ps +∇ · τ svisc + n∇µ+ K(EV` − EVs), (49)

where λ = −2ps. A comparison of the right-hand sides of Eqs. (49)
and (43) leads to the conclusion that∇ ·τs = n∇µ. When the iner-
tial effects are not negligible, momentum balance requires the left-
hand side of Eq. (49) be replacedbyρs ĖV s, which is precisely Eq. (43).
For the frictional coefficient γ , we propose the Stokes drag

form γ = 6πηsa, where it is noted that the viscosity used
is that of the effective colloidal viscosity of the ‘‘s’’ component,
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Fig. 14. The ‘‘s’’ component viscosity variation with the solid particles volume
fraction. The curve shows the matched variation through the whole range of solid
densities.

owing to the (hard core repulsive) interaction between the
different microspheres that would determine the drift velocity of
a microsphere inside the ‘‘s’’ component. This effective viscosity
has been a topic of extensive study both theoretically and
experimentally. When the solid particle density is lower than fs ≤
0.55, Pade approximants [50] can be used to represent viscosity
variation with fs. In the lowest order, the viscosity can be written
as ηs/η` = 1 + 5

2 fs + O
(
f 2s
)
. For fs near the random close

pack fraction f maxs = 0.698, experimental results [51] showed an
exponential divergence: ηs/η` ∝ exp

[
0.6/(f maxs − fs)

]
. In order

to cover both the lower and higher ends of the solid density, we
have matched the Pade approximation at a lower volume fraction,
fs ≤ 0.45, and exponential divergence at higher volume fractions
fs ≥ 0.45. Fig. 14 shows thematched relation. For Eq. (44), which is
much simpler than Eq. (43), an almost identical application of the
Onsager principle would lead to the desired result.

7. Model predictions and comparison with experiments

Numerical solution of the above scheme consists of two
main elements that underlie the dynamics of ER fluids: coupled
hydrodynamics of the two components, together with the
electrical interactions. The geometry used is that of a channel
formed by two plates, parallel to the xy plane, separated by a
distance Z0 (=650 µm in our calculations). The channel is filled
with ER fluid. A periodic boundary condition is imposed on the
calculational sample boundaries along the x direction. Along the
y direction the sample is treated as one particle thick. A non-
slip boundary condition is used at the fluid–solid interfaces. This
is because the small amount of slip will not alter the main
conclusions of the model. The upper plate is assumed to be either
moving at a constant speed along the x direction, or moved with
some incremental distance along the x direction after the electric
field is applied.

7.1. Numerical implementation

The electrical element of the problem enters through the local
electric field [EEl(Ex)]i = [EEext(Ex)]i −

∫
Gij(Ex, Ey)pj(Ey)n(Ey)dEy, and

Eq. (1) (with the local electric field). Here EEext = −∇φ, φ being
the solution of the Laplace equation ∇ ε̄(Ex)∇φ = 0, with the local
effective dielectric constant ε̄ obtained from the Maxwell–Garnett
equation

ε̄(Ex)− ε`
ε̄(Ex)+ 2ε`

= fs(Ex)
εs − ε`

εs + 2ε`
. (50)



P. Sheng, W. Wen / Solid State Communications 150 (2010) 1023–1039 1037
The Laplace equation can be solved by specifying the electrode
configuration, which can be either the usual condition of constant
potentials at the upper and lower plates, or the interdigitated
electrodes (shown below). An initial configuration of n(Ex) (or fs(Ex))
needs to be specified in order to start the solution process. Then
Ep(Ex) is calculated by initially letting EEl = EEext in Eq. (1). Once it is
obtained, the values are used to obtain a new value for EEl, which is
then used in Eq. (1) to obtain a new Ep(Ex), etc, until consistency is
achieved. A few iterations suffice.
Numerically, we solve the 2D problem (variations only along

x and z directions) by using finite difference with spectral
differentiation along the x direction, and explicit in time. Starting
from a random initial configuration of n(Ex), we first apply the
external potential to the problem, andwith the local field (and thus
Ep(Ex) through Eq. (1)) obtained as described above, n(Ex) is updated
through Eqs. (42) and (48). The updated n(Ex) is used to calculated
ε̄
(
Ex
)
through Eq. (50), and the process is iterated till consistency.

Thus starting from a random configuration, it is easy to see the
formation of chain-like columns in the ‘‘s’’ component when the
external field is applied (see below). This is the intuitively desired
consequence of an external field, as required by energetics.
The boundary condition of a moving upper plate (or the incre-

mental displacement) is then applied, and the coupled hydrodyan-
mic equations (43) and (44), together with the continuity equation
(42), are solved with the incompressibility conditions. The bound-
ary conditions for both EVs and EV` are the non-slip conditions for the
tangential components at the upper and lower solid boundaries,
and zero normal components. For n, the boundary condition is that
the normal component of the convective-diffusive current density
EJ be zero at the solid boundaries. By time-stepping forward the so-
lution, at each time step iterating the electrical solution to insure
that consistency is achieved in n(Ex), we obtain the time evolution
of the ER dynamics.
The solution of the Navier–Stokes equation is carried out by

using the finite difference scheme, with the pressure-Poisson
scheme that is relatively standard.

7.2. Predictions and experimental verifications

In Fig. 15(a), we show that for an electric field applied across
two parallel electrodes, the model can reproduce the ER shear
elastic behavior up to a critical strain associated with the static
yield stress, beyond which the fluid behavior emerges [49]. The
shear elasticity is the result of column formation as seen in the
inset to Fig. 15(a). Thus this dynamic model can recover some of
the static characteristics, in contrast to the Bingham model, for
example.
When the top plate is moved at a constant speed relative to

the bottom plate to generate a Couette flow, the resulting shear
stress experienced on the top plate is plotted as a function of time
in the inset to Fig. 15(b). Fluctuations are seen which reflect the
breaking and re-attachment of the columns. The time-averaged
stress is plotted as a function of shear rate in Fig. 15(b). The
behavior is very similar to the Bingham fluid at low shear rates,
with an extrapolated dynamic yield stress that is∼30% lower than
the static yield stress shown in Fig. 15(a).
Experiments were done in the Poiseuille flow configuration,

with different electrode configurations (see insets to Figs. 16 and
17). The ER fluid was prepared by dispersing molecular sieve
particles (product type: 3A 1/16, 5 µm in diameter, provided by
Nacalai Tesque Inc., Japan) into the silicone oil with a particle
concentration of 11.5 vol.%. The prepared ER fluid was baked at
120 °C for one hour to remove any moisture. Tensile machine
(MTS SINTECH 10/D Frame Specification) was used for the ER
effect measurements, carried out with flow rates varying from
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Fig. 15. (a) Calculated shear stress plotted as a function of strain (the angle θ )
under an electric field of 2 kV/mm. The cell is 650 µm by 650 µm by 2a (y
direction), with periodic boundary condition along the shearing direction x. To
facilitate the formation of columns under an electric field, the initial density is given
by no + δn · cos(kx). The inset shows the breaking of the columns at around the
yield stress point. Here, red color (light) indicates a high value of n and blue (dark)
a low value. The static yield stress is 374 Pa in this case. (b) Calculated (averaged)
dynamic shear stress under the Couette flow condition for the same cell as in (a).
By extrapolating to the zero shear rate, the dynamic yield stress is found to be
278 Pa. The inset shows the stress fluctuations at a shear rate of 100 s−1 . Here
a = 5 µm,m = 1.2 × 10−9 g, εs = 10, ε` = 2, η` = 10 cp, ρ` = 0.96 g/cm3

and overall fs = 30%. The zero-field shear stress is very small, hence the behavior
shown can be taken to be that for the ER effect only.
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Fig. 16. The (time-averaged) pressure difference due to the ER effect 1PER =
1Pmeas − 1Pvisc , plotted as a function of shear rate for the electrode configuration
(with a gap of 1 mm) shown in the inset. The symbols and lines represent the
experimental and our theoretical results, respectively. From bottom to top: applied
electric field is 1 kV/mm, 2 kV/mm, 3 kV/mm and 4 kV/mm. At 1 kV/mm, the
pressure difference is very small at low shear rates. Here a = 2.5 µm,m =
1.2 × 10−10 g, εs = 2.9, ε` = 2, η` = 50 cp, ρ` = 0.96 g/cm3 and overall
fs = 11.5%.
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Fig. 17. The pressure difference due to the ER effect 1PER = 1Pmeas − 1Pvisc ,
plotted as a function of shear rate for the planar, alternate electrode configuration.
The symbols and lines represent the experimental and our theoretical results. From
bottom to top are electrical field equal to 1 kV/mm,1.5 kV/mm and 2 kV/mm. The
parameter values used in the calculations are the same as that in Fig. 2.

0.05–150 mm/min through a constriction formed by two parallel
plates with a width of 1 cm, length 4 cm and separated by a
1 mm gap. The force on the piston of the cell was measured
by a force gauge and recorded with a software package. The
resulting pressure difference on two ends of the constriction can be
easily obtained from the time-averaged force. A DC power supply
(SPELLMAN SL300) provided high voltages applied to the ER fluids.
As mentioned in Section 2.1, when the ER fluid has some finite

conductivity, usually involving the transport of ions, then such
conductivitywould define a time scale τ beyondwhich the applied
voltage will be significantly screened, owing to the migration of
the ions to the electrodes. Here, however, in the experiment the
ER fluid transit time through the electrode region is 0.04 s at the
(lowest) shear rate of 1000 s−1. This is∼20 times smaller than the
τ = 0.8 s set by the conductivity of the ER particles.
In Fig. 16, it is seen that for electric field applied across the

two parallel plates, there is clearly a shear-thinning behavior at
high shear rates. Our simulation results are qualitatively consistent
with those presented in [6,52]. Here the shear rate is calculated
from the experimental flow rate as D−1

∫ D
0 |∂V (z)/∂z|dz, where D

is the distance between the two electrodes and V (z) the calculated
velocity profile that matches the flow rate.
There is a simple explanation to the shear-thinning phe-

nomenon based on the fact that since it is the electric field that
holds the solid particles together to form the columns, the ‘‘adhe-
sive force’’ for the column formation is necessarily along the field
direction z. Initially, when the shear rate is small, the shear stress
should increase with the shear rate, since it takes a larger force
to break the column within a shorter time. However, as the shear
rate increases, the steady-state tilting of the columns as seen in
Fig. 15(a) becomesmore pronounced. Hence the adhesive force de-
creases as a cosine of the tilting angle. This leads to the shear thin-
ning as observed. The solid lines are the theory predictions. It is
seen that the agreement is excellent. As the theoretical yield stress
follows a strictly E2 variation, the experimental results are seen to
be in general agreement with this trend.
An alternative design involving the use of inter-digitated

electrodes (inset to Fig. 17) would mean that the applied electric
field can have a significant component parallel to the shearing
direction. Fig. 17 shows the measured (symbols) and calculated
(solid lines) results, up to a high shear rate of 4700/s. The shear
thinning effect no longer occurs, seen to be correctly predicted by
our continuummodel with no adjustable parameters.
8. Concluding remarks

Research on the ER effect is at a stage where both basic and
applied aspects present open challenges. In the basic scientific
aspect, both the microscopic GER mechanism, as well as the
continuous improvement in the ER materials in general, are to
be further explored. In the applied aspect, the potential of active
mechanical devices, from active dampers to ER clutches and
brakes, as well as many other active ‘‘smart’’ devices, remain
to be commercially realized. It is thus an exciting prospect to
contemplate the future inwhich ER research can provide an inroad
to our understanding of molecular-scale response to moderate
external electric fields on the one hand, and to the realization of
many active mechanical devices on the other.
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