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Acoustic analog of electromagnetically induced transparency in periodic arrays of square rods
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We theoretically demonstrate a classical analog of electromagnetically induced transparency (EIT) in an
acoustic structure. Each unit in the proposed structure consists of two square polymethyl methacrylate
(PMMA) rods with one rod rotating 45° relative to the other. Both square rods can support certain surface
resonant modes respectively, which have almost identical resonant frequencies but highly different quality
factors. Thus, the two resonant modes can act as radiative mode and dark mode in the analog, respectively, and
the destructive interference of them results in EIT-like transmission effect in our structure.
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Electromagnetically induced transparency is the phenom-
enon that a sharp transparent window associated with steep
dispersion is induced into opaque atomic mediums [1,2]. It is
due to the quantum destructive interference of the different
excitation pathways to the upper level in three-level atomic
systems. The intriguing properties of EIT have been utilized
to reduce the group velocity of light [3] and freeze light
[4,5]. Recently, classical analogs of EIT [6] have been dem-
onstrated in a waveguide side coupled to optical resonators
[7-13] or in metamaterials [14—19]. Especially, mimicking
EIT-like phenomenon in metamaterials has attracted much
attention for it might pave the way for coherent controlling
electromagnetic wave in more compact devices. However, so
far there have been few works [20] related to acoustic ana-
logs of EIT, although acoustic wave is also one kind of clas-
sical waves. We believe that, similar to electromagnetic
wave, EIT-like behavior might find applications in acoustic
wave.

In this work, an acoustic structure is proposed to exhibit a
phenomenon with EIT-like characteristics. Each of the units
in the structure consists of two square rods with one rod
rotating 45° relative to the other. The square rods can support
surface resonant modes propagating around the circumfer-
ence of them [21]. These resonant modes can couple to inci-
dent waves from free space and thus their losses are pre-
dominately due to radiation coupling, for the absorption in
such acoustic system is neglectable. Finite-difference time-
domain method (FDTD) [22] is used to analyze these reso-
nant modes. It shows that, two certain resonant modes sup-
ported by the two rods respectively have close resonant
frequencies but very different displacement field distribu-
tions. For the displacement field distributions determine the
degree of the coupling between the resonant mode and the
incident wave, the two resonant modes have very different
quality factors. Consequently, after tuning the resonant fre-
quencies of the two resonant modes to be identical, they can
respectively act in the analog as radiative mode and dark
mode, and the destructive interference of them results in the
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ElT-like transmission response. In addition, an analytical
model involving two coupled resonators is used to corrobo-
rate the simulation.

The FDTD method for acoustic wave is developed from
the two-dimensional elastic equations [23],
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where u,(i=x,y) is the displacement, 7,(i,j=x,y) is the
stress (for acoustic wave, it can be simplified as pressure P
and the familiar acoustic wave equation based on variable P
can be derived from Egs. (1) and (2), N\ and w are the Lame
coefficients, and p is the density. After discretization of Eqs.
(1) and (2) in both the spatial and time domains, the differ-
ential equations are transferred into difference equations. The
specific forms of the discretized elastic equations, which are
exploited in the FDTD method, can be found in Refs.
[24,25].

To begin with, we analyze at first the eigenmodes sup-
ported by a single square PMMA (p=1000 kg/m?, ¢,
=2700 m/s, and ¢,=1102 m/s) rod immersed in water, for
they will provide the fundamental modes to mimic EIT as
shown later. Figures 1(a) and 1(b) demonstrate respectively
the displacement vector fields of the eigen modes at frequen-
cies of 0.89399(27v/a) and 0.90989(27v/a) (where v is
velocity of acoustic wave in water, and a=5/0.6 with b be-
ing the side length of the square rod and a being the lattice
constant of the periodic rod array which will be used below),
supported by the single rod. As can be seen, at each fre-
quency, there are two symmetry related degenerate modes.
Figures 1(a) and 1(b) are presented by the intention that the
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FIG. 1. (Color online) The displacement vector fields of the
eigen modes supported by a single rod. (a) The two degenerate
modes at frequency 0.893 99, which, for the convenience of com-
paring with Fig. 2(a), are presented with a clockwise rotation by 45°
(b) The two degenerate modes at frequency 0.909 89. The side
length of the square rod is denoted by b. Brightness represents the
magnitude of the displacement vector and black arrows denote its
directions.

left panels show the modes easily excited by vertical-
incidence waves, while the right panels show the modes eas-
ily excited by horizontal-incidence waves and for the conve-
nience for the later-on description. For the purposes, the
degenerate modes in Fig. 1(a) have both been rotated clock-
wise by 45°, in order to align with the waves’ incident direc-
tions. To be specific, we will use the two modes shown at the
left panel to mimic EIT in below, which thus means a verti-
cal incidence is assumed. From Fig. 1, we can also see that
the intense fields locate on the water-PMMA interfaces
around the rod, which demonstrates the surface wave char-
acteristic of the eigenmodes.

To tune the eigenfrequencies of the two eigenmodes to be
identical and also to seek the simulation convenience, we
arrange the rods in the form of periodic arrays, in which the
interaction of the eigenmode of each single rod will moder-
ately adjust the eigenfrequency. Thus, via proper selection of
the geometric parameters, the eigenfrequencies of the two
eigenmodes can be tuned to be almost identical. Here, the
rods are arranged to form the periodic array A and periodic
array B, which are shown in Figs. 2(a) and 2(b) respectively.
For the purpose of exciting different resonant mode in the
two arrays respectively, the rods of the periodic array A have
been rotated 45°. As normal-incidence waves illuminate
upon each rod array alone, the resonant mode can be excited,
which results in scattering losses and the emergence of trans-
mission dips in the spectra. In Fig. 2, the transmission spec-
tra of (a) the rod array A alone and (b) the rod array B alone
are shown. In both figures, the transmission spectra exhibit
the transmission dips center around almost identical frequen-

cies. However, the two resonant modes differ in the quality

w, .
factors QO p= A(j:., (here w, g are the resonant frequencies,

Awy g are the bandwidths, and they can be obtained via the
transmission spectra in Fig. 2) about an order of magnitude
(QOa=13.3 and Qg=290.1), which implies they couple to in-
cidence waves very differently. To explain this difference,
Fig. 2 displays the displacement vector fields of the two reso-
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FIG. 2. (Color online) (a) Transmission spectrum for the peri-
odic rod array A alone and the displacement vector field of the
corresponding resonant mode. (b) Same as (a) for the periodic rod
array B alone. In both figures: a is the lattice constant. a=5/0.6 is
set for both arrays. Brightness represents the magnitude of the dis-
placement vector and black arrows denote its directions. Magenta
arrows indicate the incident direction.

nant modes which are similar to the displacement vector
eigenfields shown in the left panel of Fig. 1. However, as can
be seen, most of the displacement vectors near the incident
end of the rod have vertical components in Fig. 2(a). On the
contrary, in Fig. 2(b), most of the displacement vectors near
the corresponding position point to the horizontal direction
while only the central ones point to vertical direction. For the
normal-incidence wave is longitudinal wave in water and its
displacement vectors are along vertical direction, it is obvi-
ous that the displacement vectors in Fig. 2(a) can couple to
the incidence wave much easier. Therefore, in the acoustic
analog of EIT, the resonant mode of the periodic rod array A
will act as a radiative mode for its lower quality factor while
the resonant mode of the periodic rod array B will act as a
dark mode for its much higher quality factor.

Then, as the two separate periodic rod arrays are com-
bined into a single structure, EIT-like phenomenon can be
observed. In Fig. 3(a), the transmission spectra of the pro-
posed acoustic structure for different separations are pre-
sented. In all these transmission spectra (red solid lines), nar-
row transparency peaks appear at the center of the broad
transmission dips. With the increase of the separations, the
coupling strength between the radiative mode and the dark
mode successively decreases. As a result, the transparency
peaks keep decreasing and become narrower, which is simi-
lar to the quantum EIT in an atomic system. To better com-
prehend the transmission response of the structure, we have
introduced a simple model with two coupled resonators
[5,15]. The periodic rod array A is represented by resonator
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FIG. 3. (Color online) (a) Transmission spectra of the proposed
structure for different separations d. Solid red lines represent the
results obtained via the simulation; dotted black lines represent the
results obtained via the analytical formula. (b) Dispersive responses
of the structures. u is the displacement in the center between the
two rod arrays. Dotted gray lines represent the dispersive responses
of rod A array alone as a comparison.
1, which is subject to incidence waves I(f)=e'®. The periodic
rod array B is represented by resonator 2, which can be ex-
cited by the couple between the two resonators. The charac-
teristic quantities x,(f)=a(w)e’ and x,(t)=b(w)e'!, which
describe the resonant states of resonators 1 and 2, satisfy the
coupled equations,

%1(0) + 11 (1) + @i, (1) — kxy(0) = 1), (3)

(1) + yaxn (1) + (@ + 8)*x,(1) — kxy (1) = 0. (4)

Here w, is the resonant frequency of resonator 1. J is the
detuning of the resonant frequency between resonator 2 and
resonator 1(8<<v,). v, and 7, are the losses in resonators 1
and 2, respectively, (y, <y, < ). These losses are predomi-
nantly due to scattering losses, for the absorption in such
acoustic system is neglectable. « is the coupling coefficient
of the two resonators. After substituting x,(f)=a(w)e'®’,
x,(1)=b(w)e’ in Eqgs. (3) and (4), the amplitude of both
characteristic quantities can be described by the equations,

a(w%—w2+iw’y1)—Kb= 1, (5)

bl(wy+ 0)* — w* +iwy,] - ka =0. (6)

By solving Egs. (5) and (6), we can obtain
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Because resonator 1 couples with incidence waves I(r), and
the energy scattered from this resonator is dominant, thus the
energy scattered from the coupled resonators can be pre-
sented as

Py(1) =1(1)x, (7). (8)

With the approximation w—wy<<w, and therefore wé—wz

~2w(wy—w), the scattered energy P (w) during one period
of oscillation of incidence waves I(f) can be found

(wy+ 65— w)+i%
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In the processing procedure, « is a fitting parameter, so we
still employ « to represent *. Here, the proposed structure is
an infinite periodic structure, and the corresponding wave-
length of the incidence wave is larger than the lattice con-
stant a. Thus, for normal-incidence plane waves, only
0-order diffraction needs to be considered, and scattered
wave is in the normal direction. Moreover, as shown in Fig.
2, the incidence wave is backward scattered by the resonant
mode, therefore the reflection R can be replaced by P(w).
Consequently, the transmission spectra can be obtained as
T(w)=1-Pyw). The results calculated by the analytical
model are also presented in Fig. 3(a) (dotted black lines).
The parameters needed in the analytical calculation can be
obtained via the transmission spectra of each rod array (Fig.
2). Here, wy=0.87369Q27mv/a), 6=0.0024Q27wv/a), vy,
=0.03278(2mv/a), y,=0.00151(27v/a), and « is the fitting
parameter. As can be seen, the simulated results are repro-
duced well by the analytical results except the very close
separation cases. For these close separation cases, the cou-
pling strength between the radiative mode and the dark mode
is so strong that the resonant frequency of each mode is
modified. Thus, the simulated transparency peaks deviates
from the analytical peaks which have been calculated using
the unchanged parameters. While in the long separation
cases, weak coupling has not altered the resonant frequency
of each mode, and thus simulated peaks fit the analytical
peaks very well. In both close and long separation situations,
the asymmetric line shape of each resonant mode has also
introduced minor discrepancy outside the regions of the
transparency peaks, for the line shape of each resonant mode
should be symmetry in the coupled resonators model. Any-
way, the coupled resonators model has been good enough for
us to give a quantitative description of our system. Beside
the narrow transparency peak, a highly dispersive behavior is
also an important feature of EIT. In Fig. 3(b), the dispersive
responses of the structures are shown (red solid lines). These
dispersive responses can be obtained via Fourier spectra of
the real part of the displacements in the center between the
two rod arrays [13]. The dispersions are normal and have
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FIG. 4. (Color online) (a) The displacement field distribution at
the transparency peak frequency w=0.879(27v/a) of the structure
with separation d=0.3a. (b) The field distribution at the transpar-
ency peak frequency w=0.875(27v/a) of the structure with sepa-
ration d=1.1a. (c) The field distribution at the frequency w
=0.86(27v/a) of the same structure as in (b). Magenta arrows in-
dicate the incident direction.

very steep slope, which indicates that significant reduction of
group velocity of acoustic wave can be achieved.

At last, to visualize and further understand the EIT-
behavior of our structure, the displacement field distributions
are demonstrated. In Fig. 4(a), the field distribution at the
transparency peak frequency w=0.879(27v/a) of the struc-
ture with separation d=0.3a is shown. Both radiative mode
and dark mode are excited, and strong coupling between the
two modes can clearly be seen. Due to the destructive inter-
ference, the radiative mode is suppressed and thus with much
weaker intensity. Comparatively, for the field distribution at
the transparency peak frequency w=0.875(27v/a) of the
structure with separation d=1.1a [Fig. 4(b)], almost identical
field distribution can be seen. However, in this case, the cou-
pling between the two modes is much weaker. This confirms
our aforementioned judgment that, with the longer separa-
tions, the analytical peaks are more consistent with the simu-
lated peaks because of the weaker coupling. In addition, in
Fig. 4(c), we show the field distribution at the frequency w
=0.86(27v/a) of the structure with separation d=1.1a. For
this frequency deviates from the resonant frequency of the
dark mode, only radiative mode is strongly excited and inci-
dent plane waves are backward scattered. By comprehensive
consideration of all the field distributions, we are able to
provide a clear description of the EIT-like behavior of our
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structure. As the plane acoustic wave at the resonant fre-
quency is incident on the structure, the radiative mode is
excited in the first place. And then, the dark mode is excited
via the scattered waves of the radiative mode. Thus, there are
two possible excitation pathways, namely, the direct scatter-
ing from the radiative mode and the indirect scattering from
the dark mode via the forward and backward coupling be-
tween the two modes. In a three-level atomic system (com-
posed of a ground state |0), a metastable state |1) and an
upper state |2)), the probe laser drives the transition |0)
—|2) and the pump laser drives the transition |1)—|2). For
[0)—|1) is a dipole-forbidden transition, there are only two
possible pathways, namely, [0)—|2) and |0)—|2)—|1)—|2),
and the destructive interference of these two pathways results
in EIT [1]. Obviously, there is a direct analogy between our
system and the three-level atomic EIT system. The direct
scattering from the radiative mode is in analogy with the
possible pathway |0)—|2) while the indirect scattering from
the dark mode via the forward and backward coupling be-
tween the two modes corresponds to the possible pathway
|0)—=[2)—|1)—|2). Therefore, the destructive interference be-
tween the direct and the indirect excitation pathways results
in EIT-like behavior in our system.

In conclusion, we have shown that an acoustic structure
composed of two different square rod arrays could exhibit
the EIT-like phenomenon. With proper geometrical arrange-
ment, individual rod in each periodic array can support cer-
tain resonant modes, which have almost identical resonant
frequencies but very different quality factors. Thus, these
modes can act as radiative mode and dark mode respectively
in the EIT mimicking. Both simulation and analytical model
are exploited to study the transmission response of the struc-
ture, and narrow transparency peaks and highly dispersive
behaviors have been observed. Since the structure is scale-
able, the acoustic EIT-behavior can be achieved at a broad
range of frequencies.
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