On-Surface Synthesis and Characterization of Conjugated Oligomers Using Low Temperature Scanning Tunneling Microscopy and Spectroscopy

Guowen KUANG
Supervisor: Prof. Nian LIN

Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
Synthesis of molecular wires
- oligomers comprising porphyrins and phenyls

Characterization of molecular wires
i. resonant charge transport
ii. negative differential conductance
iii. spin-spin coupling
iv. spin crossover

Summary
Introduction: molecular electronics

Molecular electronics is the study and application of molecular building blocks for the fabrication of electronic components.

- **Advantages:**
 - Bottom-up fabrication
 - Multiple functionality
 - Mechanical flexibility
 - Environment-friendly

- **Challenges:**
 - Production?
 - Synthesize molecules with specific functionality
 - Visualization?
 - Probe structural details at atomic resolution
 - Characterization?
 - Measure electronic structure and charge transport property

http://www.asdn.net/asdn/electronics/molecular_electronics.shtml
Introduction: STM / STS

STM

Morphology

Electronic structure

Molecular orbital

STS

Transport property

Conductance

1 nm
Experimental setup

Characterization:
- STM: structural details
- STS: molecular orbital

Sample preparation:
- Organic molecule source
- Metal atom source

Ultrahigh vacuum
- Low-temperature
 - 77K @ LN₂
 - 4.8K @ LHe
Outline

- **Introduction**
 - molecular electronics
 - scanning tunneling microscopy and spectroscopy
 - experimental setup

- **Characterization of molecular wires**
 i. resonant charge transport
 ii. negative differential conductance
 iii. spin-spin coupling
 iv. spin crossover

- **Summary**
Synthesis: introduction

On-surface synthesis

Oligomer 2

Oligomer 1

Oligomer 0
Synthesis: oligomer 2

Br₂-TPP @ Au(111)

Ullmann coupling reaction @ 180°C annealing

Oligomer 2
Synthesis: oligomer 1

Co-deposition and 180°C annealing

@ Au(111)
Synthesis: oligomer 0

On surface:

\[
\text{Br}_2-2\text{DPP}
\]

Steric hindrance

In solution:

Synthesize in solution then deposit on surface
Synthesis of Br_2-2DPP in solution
Synthesis: on-surface metalation

Metalation by Fe, Ni, Co, Zn, Mg, Mn, Ce ...

Oligomer 0, 1 and 2 can be *partially* or *fully* metalated by Fe
<table>
<thead>
<tr>
<th>Oligomer 0</th>
<th>Molecular wires</th>
<th>Metalation derivatives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligomer 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligomer 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Synthesis: summary
Outline

- **Introduction**
 - molecular electronics
 - scanning tunneling microscopy and spectroscopy
 - experimental setup

- **Synthesis of molecular wires**
 - oligomers comprising porphyrins and phenyls

- **Characterization of molecular wires**
 - iii. spin-spin coupling
 - iv. spin crossover

- **Summary**
Charge transport: mechanism

Off-resonance tunneling

\[G = G_0 \exp(-\beta z) \]
Saturated: 0.8 Å⁻¹
Conjugated: 0.2 Å⁻¹

Resonant transport: nearly length-independent

Delocalized molecular orbital

Charge transport: electronic property of oligomer 2

HOMO \rightarrow localized

LUMO \rightarrow delocalized

-0.8 V

1.6 V

HOMO \rightarrow localized

LUMO \rightarrow delocalized
Charge transport: conductance measurement

STM vertical manipulation

Before manipulation

After manipulation

2 nm

I (V) and \(\frac{dI}{dV} (V) \)

Before manipulation

After manipulation

2 nm

\(\Delta Z \)
Charge transport: different contacts

At lower tip height:

Z displacement: $> 5 \text{nm}$ (19 %)
$< 3 \text{nm}$ (81 %)

Strong contact vs. **weak** contact

ΔZ = 1.3nm
Charge transport: first-principle simulation

NEGF – simulation of transmission:

Weak:

Strong:

Conclusion: weak contact \rightarrow physical adsorption

strong contact \rightarrow covalent bonding

electrons transfer through delocalized LUMO
Charge transport: long-range resonant transport

At higher tip height:

Simulation:

- \(\Delta Z (\text{nm}) \):
 - 1.6
 - 2.6
 - 3.3
 - 4.3
 - 5.2

Graph showing differential conductance \(dI/dV \) against bias voltage.

Graph showing \(\Delta Z \) against bias voltage.
At higher tip height:

Resonant transport through **delocalized** molecular orbital magnetic impurities do not affect transport.
The magnitude of the **first** peak

Oligomer 2

Fe-metalated oligomer 2

Nearly length-independent
Charge transport: branched molecular wires

Br₂-TPP molecules @ Au(111) @ 250°C
Charge transport: T-wire exhibiting NDC

- Lift up T-wire by terminal S
- Stretched after manipulation
- Resonant charge transport
- Negative differential conductance
Charge transport: T-wire exhibiting NDC

- Lift up T-wire by terminal B
- Flipped after manipulation
- Resonant charge transport
- NDC
Charge transport: why NDC?

- Multi-pathway for current?
- Structural kink?
Charge transport: multi-pathway?

- 90°-kinked L-wire
- Lift up by terminal K
- No NDC

Multi-pathway
Charge transport: 90° kink?

- 90°-kinked L-wire
- Lift up by terminal T
- 67% with NDC
Charge transport: 120° kink?
Charge transport: mechanism

Redox reaction and resonance transport

Polaron induced charge storage

Alignment and misalignment of delocalized molecular orbital

Changes in molecule-electrode coupling

M. L. Perrin et al., Nat. Nanotechnol. 9, 830 (2014)
Charge transport: first-principle simulation

HOMO-1 becomes *less delocalized* at high bias.
Charge transport: summary

Oligomer 2

- Resonant charge transport

- Negative differential conductance
Outline

- **Introduction**
 - molecular electronics
 - scanning tunneling microscopy and spectroscopy
 - experimental setup

- **Synthesis of molecular wires**
 - oligomers comprising porphyrins and phenyls

- **Characterization of molecular wires**
 i. resonant charge transport
 ii. negative differential conductance
 iv. spin crossover

- **Summary**
Spin-spin coupling: introduction

Interaction between spins

- **Direct** coupling
 - overlap of orbitals with non-zero magnetic moment
 - dipole-dipole coupling

- **Indirect** coupling
 - interacting through a certain medium
 - RKKY – mediated by conduction electrons
 - exchange – mediated by organic molecule

[Diagrams showing distances 1.73 nm, 1.31 nm, and 0.89 nm]
Spin-spin coupling: Fe-TPP

Fe-TPP monomer

Spin-excitation spectroscopy @ 4.8K
Spin signature of individual atoms
Spin-spin coupling: Fe-metalated oligomer 2 and 1

Spins in the oligomers exhibit the same behavior as isolated spins: neighboring spins are \textit{decoupled}
Spin-spin coupling: Fe-metalated oligomer 0

Spin-excitation *quenched* \(\rightarrow\) neighboring spins are *coupled*

Exchange interaction mediated by molecular backbone
Spin-spin **indirect** interaction mediated by molecular backbone
Introduction
- molecular electronics
- scanning tunneling microscopy and spectroscopy
- experimental setup

Synthesis of molecular wires
- oligomers comprising porphyrins and phenyls

Characterization of molecular wires
i. resonant charge transport
ii. negative differential conductance
iii. spin-spin coupling

Summary
Spin crossover: introduction

Spin crossover

External stimulus:
- Temperature
- Light
- Charge flow
- Pressure
- Electric field
-

Switches in Molecular electronics

Assemble of molecules

Single-molecule level?

Switching

Spin crossover: vertical manipulation + STS

Bottom to top: 1.2 to 3.4 nm

Kondo effect @ 4.8 K
Spin crossover: width of Fano resonance

\[\Gamma_{\text{Fano, Res.}} \]
Spin crossover: DFT simulation

d_{xy}
d_{yz}
d_{xz}
d_{z^2}
$d_{x^2-y^2}$

PDOS (a.u.)

unpolarized
unpolarized
Spin crossover: magnetic moment & Fe-N bond length

\[T_K \approx \frac{\omega_0}{k_B} \exp\left(\frac{1}{J \rho}\right) \]

\(\rho J \rightarrow \text{spin density} \)

Porphyridium conformation:

Saddle ↔ **planar**

Graphs showing the relationship between magnetic moment and gap, and Fe-N bond length and gap.
Summary

i. Resonant charge transport

ii. Negative differential conductance

iii. Spin-spin coupling

iv. Spin crossover
Acknowledgements

• Prof. Lin Nian (supervisor)
• Prof. Jose Ignacio Pascual (CIC nanoGUNE, San Sebastian, Spain)
• Prof. Chen Keqiu (Hunan University)
• Prof. Liu Peinian (East China University of Science and Technology)

Current members:
• Dr. Yan Linghao
• Dr. Liu Jing
• Mr. Lyu Guoqing
• Mr. Zhang Qiushi
• Ms. Zhang Ran
• Mr. Gao Zi’ang
• Mr. Xia Bowen

Former members:
• Dr. Wang Weihua
• Dr. Dong Lei
• Dr. Wang Shiyong
• Dr. Lin Tao
• Dr. Zhao Wei
• Mr. Chen Cheng
Acknowledgements

Thesis Examination Committee:

• Prof. Sin Kwok Raymond WONG (*Chairperson*)
• Prof. Wei XU
• Prof. Michael Scott ALTMAN
• Prof. Ophelia K. C. TSUI
• Prof. Yongli MI
• Prof. Nian LIN (*Supervisor*)
Thanks For Your Attention