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1. Introduction
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· With the advent and boom of the Internet, more and more information is available to be shared online.
· Information retrieval concerns the problem of finding some documents from an information storage in response to a user’s query.

· Relevance feedback refers to the relevancy information extracted from the history of usage or expert opinion.
· Relevancy feedback can be used to refine the representations of documents and queries, so that subsequent retrieval sessions can be benefited.
Two tasks:
· ad hoc retrieval: a query is given, and the goal is to return a list of ranked documents, according to their similarities with the queries.
· Document routing: a document is given to a database, and the goal is to categorize it according to their similarities with the queries.

2. A Unified Probabilistic Model

· Traditional approaches to ad hoc retrieval and document routing were based on heuristics, and the two tasks were considered separately.
· Bodoff et al proposed a probabilistic model unifying ad hoc retrieval and document routing.
3. Our Objectives
· To apply Bodoff’s unifying model for ad hoc retrieval and document routing using a mean-field approach.
· The mean-field approach is used in two steps: parameter estimation and hyperparameter estimation.

· Parameter estimation: to specify the high dimensional vectors in a vector space model, which represent the documents and queries. The likelihood function is maximized.
· Hyperparameter estimation: to determine the model hyperparameters using a mean-field approach to leave-one-out validation.
4. Bodoff’s Model

· A set of Nd documents and Nq queries.
· Each document and query is represented by an M-dimensional vector.
· The observed document vector D0 is distributed around the true document vector D (similar Q0 and Q for queries).
The Vector Space of Information Retrieval
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The Probability Meta-structure in Bodoff’s Model
(a) The document D0 we really observe is distributed around the true document vector D according to the probability distribution fD(D0|D).

(b) The query Q0 that the user actually submits is distributed around the true query vector Q according to the probability distribution fQ(Q0|Q).

(c) If a document is relevant to a query, then the relevance variable B = 1.

If the document is irrelevant to the query, then B = 0.

The true documents and queries are distributed according to the distribution fB(D,Q|B).

Our task:

5. The Proposed Distributions
(a) 
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(b) 
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(c) 
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The total probability of observing all documents and queries, given the relevancy relation between them:
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where the energy function E is
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Ξ denotes all hyperparameters {αd, αq, β}.
6. Parameter Estimation

Introducing Lagrange multipliers for the spherical constraints,
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Mean-field theory: in the limit of large Nd, Nq and M, the distribution can be well approximated by the saddle point of ln P:
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Its iterative solution converges fast.

7. Hyperparameter Estimation

· Standard method: tedious leave-one-out cross validation

· Our alternative: approximate leave-one-out estimates using the cavity method, without having to go through the leave-one-out training processes.

· If query b were left out, then in the mean-field approximation, the changes of individual document vectors would be decoupled from each other
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resulting in leave-one-out estimates.
8. Experimental Results 
· Cranfield data: a collection of articles of high-speed aerodynamics and aircraft structures, 1,398 documents, 225 queries, 1,836 relevancy data, 4,234 dimensions.

· CISI data: 1,460 information science abstracts, 1,460 documents, 112 queries, 3,114 relevancy data, 5,667 dimensions.
For comparison:
· Retrieval in the original dimension:
* Baseline: by observed vectors (tf-idf)

* Mean-field estimates of true vectors (MF)
· Retrieval in the reduced dimension:
* Baseline: by SVD of observed vectors (LSI)

* Mean-field estimates of true vectors (MF)
· Note the increase in retrieval precision from baseline to mean-field
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ad hoc retrieval of CISI: MF vs LSI
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Document routing of CISI: MF vs LSI
Dependence on hyperparameters:
· Left: mean-field estimate of the average precision

· Right: exact search of the average precision

They have very similar contours and peak locations, but mean-field is much faster.

· 
Hyperparameter dependence for ad hoc retrieval in reduced dimension for CISI: (a) mean-field leave-one-out; (b) exact leave-one-out.
Optimal hyperparameters:

· We used the mean-field estimate to search for the optimal hyperparameters.

· We used the exact leave-one-out procedure to find the average retrieval precision at the found optimal hyperparameters.
· For comparison, we used the exact leave-one-out procedure to find the true maximum location.
Leave-one-out cross validation for ad hoc retrieval in reduced dimension
	
	αd/β
	αq/β
	Av. precision

	
	CISI

	LSI
	-
	-
	0.079

	Mean Field
	0.3
	12.0
	0.142

	Exact
	0.3
	10.1
	0.142

	
	Cranfield

	LSI
	-
	-
	0.178

	Mean Field
	0.4
	1.1
	0.248

	Exact
	0.6
	1.5
	0.250


Leave-one-out cross validation for document routing in reduced dimension

	
	αd/β
	αq/β
	Av. precision

	
	CISI

	LSI
	-
	-
	0.104

	Mean Field
	28.9
	1.6
	0.192

	Exact
	23.0
	2.5
	0.193

	
	Cranfield

	LSI
	-
	-
	0.240

	Mean Field
	2.5
	1.1
	0.351

	Exact
	0.9
	0.7
	0.356


· In most cases, optimal hyperparameters found by the mean-field estimate and exact search agree well.
· In cases where discrepancies exist, the average precisions are essentially the same, due to flat precision maxima.
· In all cases, the mean-field approach is much faster.
9. Conclusion
· We have derived fast algorithms for parameter and hyperparameter estimations for a probabilistic model of documents, queries and relevancy assessments.
· We achieved improved precision for ad hoc retrieval and document routing above the baselines and other heuristics (published elsewhere).

· Further challenge: Mean-field methods for rapidly expanding databases, which demand online algorithms for information search and document classification.
Appendix: Precision and Recall
· When the user submits a query Q, the search engine returns a list of documents ranked in order of the overlaps Q·D.
· If the user examines Ne documents, among which Nr documents are relevant to the query, then the retrieval precision is defined as Nr/Ne.

· If there are totally NR relevant documents in the whole database for the query, then the recall level is defined as Nr/NR.
· Then we can draw a recall-precision curve.

AA02: Mean-field approach in IR
The Vector Space of Information Retrieval
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MEAN-FIELD APPROACH TO A PROBABILISTIC MODEL IN INFORMATION RETRIEVAL
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