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1. Introduction


· In many classification and regression tasks, the choice of hyperparameters is an important factor in determining their performances.

· Most methods are inspired by cross-validation or its variant, leave-one-out validation. They are often tedious.
· We propose a new approach to hyperparameter estimation in large networks, where mean-field theories work.
· Fast: no cross-validations, no matrix inversions, no iterative optimizations.
· The proposed technique is based on the cavity method.
2. Notations
· A network with N >>1 adjustable para-meters wj, j = 1, …, N, or the vector 
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· A training set of p examples with inputs 
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 and outputs y(, ( = 1, …, p.
· An energy function E of the form
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where the activation 
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, and a labels the hidden nodes.

· Learning by gradient descent dynamics:
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3. Green’s Functions


· The Green’s function Gaj,bk(t,s) is the response of the weight waj at time t, due to a unit stimulus added at time s to the gradient term with respect to weight wbk, in the limit of a vanishing magnitude of the stimulus.

· Linear response relation: For a small stimulus (haj(t),
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· Let 
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 be the network in which example ( is omitted from the training set.
· Treating example ( as a stimulus, we can find the relation between the activation 
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 and the cavity activation 
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· At the steady state, linear response relation:
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where (ab is called the susceptibility.

· Analogy: curve fitting with elastic string:

Predicted value of a data point

= Fitted value of the data point

· susceptibility

    ( force of the point on the string


4. Generalization Error

· Generalization error = error function averaged over the example distribution.
· Leave-one-out generalization error in terms of the cavity activations:
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5. How to Measure the Green’s Functions?
· Parallel learning in several networks:
· Reference network: original process
· Other networks: an added constant stimulus for the weights feeding hidden unit a: (hbj(t) = ((ab.
· At the steady state, the difference with the reference network yields ( times the average susceptibility.
6. Results 
For comparison:

· Linear Unlearning Leave-One-Out (LULOO) Validation – extending Hansen’s work, need matrix inversion
· Cross validation
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· Green’s functions yield estimates of the optimal weight decay with comparable precision as the other methods.
· Standard deviations in 10 samples:
	Green’s
	7fold x-valid
	LULOO

	0.30
	0.25
	0.24


· Standard deviations in 80 samples of single-layer perceptrons:
	Green’s
	10fold x-valid
	LULOO

	1.21
	1.46
	1.62


· CPU time for golden search in single-layer perceptrons:
	Teacher
	Green’s
	10fold x-v
	LULOO

	1.0
	1.6
	3.0
	4.6


7. Overtraining

· Overtraining: During learning, the generalization error may decrease in the early stage, reaches a minimum and then increases towards the steady state.
· How to determine the early stopping point where the generalization error is minimum (without cross-validation)?
8. Example: Linear Regression 
· Parallel learning in 2 networks:
· Network 1: original process
· Network 2: an added initial stimulus (hj(t) = (((t).
· At time t, the difference between the networks yields ( times the average G(t,0).
· Time-translation invariance in linear regression: G(t, s) = G(t – s, 0).
· We can then find the cavity activations and the estimated generalization error at time t, locating the early stopping point.
· Ratio of CPU time:
	Green’s
	5-fold x-valid

	1
	1.4


· Good performance:
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9. Conclusion
· We have proposed a method for fast estimation of hyperparameters in large networks, based on the linear response relation in the cavity method, and an empirical measurement of Green’s functions.
· No cross-validations, matrix inversions and iterative optimizations.
· Further development:
· Gradients of generalization error: very efficient for multiple hyperparameters
· Approximations for cases with no time-translational invariance
· The case of correlated inputs and real data
· Support vector machines
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