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Abstract 
 
This report briefly introduces the information on eclipsing binary star systems. We made a 
program which simulates the orbital motion and perform light curve plotting. A detailed 
description on our project is provided. We also performed a simulation on a famous eclipsing 
binary, Algol, and compared it with the actual experimental result. 
 
 
1. Introduction [1] 

 
Half or more of all stars in the universe are in orbit around another star or stars. In most of these 
multiple-star systems, there is a type of system which consists of two stars only, known as a 
binary star system, whose components may be separated by a large fraction of a light year, or 
they may be almost touching. In binaries, individual stars orbit in elliptical orbits around a 
common center of mass. The more massive component, which is not necessarily the brighter of 
the two stars, has the smaller orbit; the relative size of each star's orbit is inversely proportional 
to its mass.  
 

One type of binary system is known as eclipsing binaries, in which the eclipse of one star 
by another is the key to identify its binary nature. In such systems, an eclipse occurs because 
the stars are fairly close to each other and their orbits are seen more or less edgewise. Thus their 
periodic motion causes first one star and then the other to pass between its companion and us, 
temporarily cutting off all or part of the eclipsed star's light. Consequently there will be a 
decrease in the apparent brightness of the system each time an eclipse occurs. The resultant 
light curve of the system depends on the brightness and size of both stars which provides very 
useful information for deriving a model of the system. 
 

The aims of our project are to simulate the orbital motion and changes in luminosity of an 
eclipsing binary system with a computer program, and try to study the relationship between the 
light curve and the characteristics of binary stars with the aid of the program. By using a real 
example, we will compare the output results of the program with actual experimental results. 
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2. The Physics of Binary Stars 
 
2.1. Basic Assumptions 
 

In order to simplify the calculations involved in the program, we assume that all stars in 
the binary systems involved in the program are spherical and are blackbodies. Also, the limb 
darkening effect, material transfer phenomenon between the stars and distortion of stars are 
neglected. 

 
2.2. Period of the system 
 

The period of a binary system τ  is given by 
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where d is the average separation of the stars in astronomical units, MA and MB are respectively 
the masses of the two stars, namely A and B,  of the binary system, measured in units of solar 
masses.[2] 
 
2.3. Position of the stars at a particular time 
 

The orbit of the binary stars can be computed using Newtonian mechanics [3]. Firstly, for 

a given time t, the eccentric anomaly ψ of the true relative orbit can be found by the equation 
.sin Ψ−Ψ= εωt  (2) 

This can be solved by using the following iteration formula derived from Newton’s Method. 
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where ε is the eccentricity of the orbit, ω is the angular velocity derived from τ , and t varies 
from 0 to 2π. [3] 
 

Then the real distance r is calculated, from the definition of eccentric anomaly, by the 
following formula. 

)cos1( Ψ−= εdr  (4) 
After that, the polar angle θ is found by the elliptical orbit equation. 
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The coordinates of star A in the orbital plane (xA’, yA’) and that of star B (xB’, yB’) are then 
respectively given by 
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Finally, they are transformed into the coordinates of star A and star B in the true orbit, i.e. (xA, 
yA, zA) and (xB, yB, zB) respectively, as follows 
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where α is the angle of inclination with z-axis as the axis-of rotation, β is the angle of 
inclination with y-axis as the axis-of rotation, and γ is the angle of inclination with x-axis as the 
axis of rotation. (Refer to Fig. 1) 

 

Fig. 1 - The directions of the axes of rotation. The y-axis is pointed into the paper. 
 
2.4. Observable power [4] 
 

To discuss the various cases of eclipses, we let d = the distance between the centers of the 
stars, projected onto the plane transverse to the line of sight. Also, a = the radius of the larger 
star, b = the radius of the smaller star, Fa = light flux from the surface of the larger star and Fb 
= light flux from the surface of the smaller star. 
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Case 1: d > a + b (No eclipse) 
 

This is the full phase. The entire surfaces of both stars are not blocked. The observable 
power P is 

22 bFaFP ba ππ +=  (7) 

 
Case 2: a – b < d < a + b (Eclipse occurs) 
 

In this case, only the projected area not being shaded by the front star contributes to the 
observed light. Assuming that the smaller star is eclipsing the larger star, the unshaded area of 
the eclipsed star is given by 
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where α and β (Refer to Fig. 2) can be obtained by the cosine law. 
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Therefore, the observed power from the eclipsed star (in this case, Pa) is  
[ ].)sin(cos)sin(cos 22 βββαπαα −+−+= baFP aa  (9) 

And the total observable power P is the observable power from the eclipsed star and its 
full-phase partner, i.e. 

[ ] 222 )sin(cos)sin(cos bFbaFP ba πβββαπαα +−+−+=  (10) 

 
 

Fig.2 - Diagram of the binary star during partial eclipse 
 
Case 3: d < a – b (The entire smaller star is eclipsing the larger one) 
 

The total observable light is contributed by the whole smaller star and the non-eclipsed 
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part of the larger star. Therefore the observable power P is 
222 )( bFbaFP ba ππ +−=  (11) 

 
Case 4: d < a – b (The smaller star is completely eclipsed by the larger one) 
 
The total observable light is solely contributed by the whole larger star. Therefore the 
observable power P is 

2aFP aπ=  (12) 

 
3. Study of the properties of binary systems 
 
3.1. Relationship between star radii and resultant light curve 
 

In an eclipsing binary system, if both stars have similar radii, minima with sharp bottom are 
observed. (Refer to Fig. 3a) If the difference of radii of the two stars is significant, the minima 
are flat at the bottom. (Refer to Fig. 3b) It is worth noticing that the duration of the flat bottom 
is the time for the smaller star to travel out from the back of the larger star. Hence, the ratio of 
the flat-bottom duration to the eclipse duration reveals the ratio of the radii of the two stars. 
 

(a) 
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(b) 
Fig. 3 - Light curves of binary system with stars of (a) similar masses and (b) masses with 

significant difference 
 
3.2. Relationship between inclination of orbit and resultant light curve 
 

If the orbit of a binary system has no or very small inclination, total eclipse occurs and flat 
bottom minima will be observed. (Refer to Fig. 4a) If the inclination increases, the flat bottom 
will disappear, and a sharp bottom is observed, because the smaller star is no longer fully 
eclipsed. (Refer to Fig. 4b) If the inclination continues to increase, no eclipse will occur and 
hence no periodic change of the light curve is observed. (Refer to Fig. 4c) 
 



 7

(a) 

(b) 
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(c) 
Fig. 4 - Light curves of binary system with orbits of (a) no inclination, (b) small inclination and 

(c) large inclination. In this example, both stars have masses with significant difference. 
 
3.3. Relationship between masses and resultant orbit 
 

If both stars have similar masses, their orbits will be the same with their radii identical, no 
matter what their volumes are. (Refer to Fig. 5a) However, if their masses differ a lot, the radii 
of their orbits will also be different. The orbit of the more massive star will have a shorter 
radius than that of the less massive one. For example, if the mass of a star is twice of its 
companion, the radius of its orbit is half of its companion. (Refer to Fig. 5b) 

(a) 
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(b) 
Fig. 5 - Orbits of binary system with stars of (a) identical masses but different volume, and (b) 

masses with 3-time difference but same volume. The orbit with smaller radius is the one of more 
massive star. 

 
3.4. Example - Algol (Persei β) 
 

Algol is a famous eclipsing binary system. In fact, it is the first eclipsing binary to be 
discovered. It is known that Algol A is a main sequence star of spectral type B8 (surface 
temperature=12000K), with mass of 3.59

8
 and radius of 2.88

8
. Algol B is a subgiant of 

spectral type K2 (surface temperature=4888K) with mass of 0.80
8

 and radius of 3.54
8

. The 

average separation between Algol A and Algol B is about 15 solar radius (1.04×1010 m). The 
eccentricity is nearly zero (i.e. the orbit is circular), and the orbit is inclined with angles of 

inclination α=0°, β=-7.69° and γ=0°. [5] 
 

After running the program, it is found that the period is about 3.21 days. The light curve has 
two minima occurred at 0.5p and 1.5p. It shows that the minimum at 0.5p (minimum a) is much 
shallower than that at 1.5p (minimum b). Minimum a only has a decrease in brightness of 2%, 
while minimum b has a decrease in visual brightness of 71%. The difference between the 
maximum and minimum magnitude of the system is about 1.36, which agrees quite well  with 
the observational result. (Refer to Fig. 6a, b) However, the discrepancy between observational 
result and result from the program is inevitable, because we have neglected the effect of 
distortion and material transfer. Algol is actually a semidetached binary system where the 
volume of Algol B is greater than its boundary of the Roche Lobe. Significant transfer of 
materials occurs, which distorts the shape of Algol B (Refer to Fig. 6c). 
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(a) 

 (b) 

 (c) 
Fig. 6 - Light curves of Algol. In (a), the one simulated by the program, it shows that the absolute 

minimum of the light curve is at t=1.5p, with remaining brightness of 28% only (i.e. 72% 
decrease in brightness). In (b), it shows the light curve of Algol based on experimental data 

(Adapted from http://www.aavso.org/vstar/vsotm/0199.stm). In (c), it shows the material transfer 
from Algol B to Algol A. 

 
4. Conclusion 
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In this project, we have successfully simulated the orbital motion and changes in 

luminosity of an eclipsing binary system with a computer program, and studied the relationship 
between the light curve and the characteristics of binary stars with the aid of the program. The 
program has been proved successful by comparing the output results of the program with actual 
experimental results of Algol. We believe that the program can be further developed to 
simulate more than two stars and the assumptions be accounted for.  Finally, we sincerely hope 
the program can ease the work of all who engage in the field of astronomy.  
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6. Appendix: Derivation of the Luminosity of a Star 
 

Consider a ring of width a dθ on the surface of the larger star, where a is the radius of the 
star (Refer to Fig. 7). Then the area of the ring δA is given by 

θπδ radA 2=  (13) 
where r is the radius of the ring. The power transmitted from the ring δP0 is 

θπδ radFP 20 =  (14) 
where F is the energy flux from the surface of the star. 
 

However, this power is transmitted at an angle of θ to the line of sight. Hence the 
observable power from the ring δP is 

θθπδ draFP cos2=  (15a) 
Since r = a sin θ, we have 

θθθ dradadr 22cos −==  (15b) 

Hence δP becomes 
rdrFP πδ 2=  (15c) 

The total observable power of the star is the area projected onto the plane transverse to the line 
of sight. In full phase of the star, the observable power of the star P is 
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Fig.7 - Diagram for deriving the power of a star 
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