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Abstract: Cosmic Ray has been a hot topic of research for nearly a century. Several 
ways have been proposed to accelerate the interstellar particles to high energy, and one 
of these is acceleration by the shockwave produced from the supernovae through 
collisions between the interstellar particles and the particles in the supernova remnants 
[1]. What we are interested in is how cosmic ray can be accelerated to that high energy 
(>1010 eV). Here, we will model the collision of the interstellar particles in the 
shockwave of a supernova and show how the particles can be accelerated.  
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I. Introduction 
Cosmic Rays are subatomic particles 
bombarding the Earth. They were first 
discovered to be from outerspace when 
Victor Hess flew a balloon to an altitude 
of about 16000 ft and found a very 
penetrating radiation coming from 
outside atmosphere [2]. In 1949, Enrico 
Fermi proposed a mechanism, called the 
Fermi Mechanism, which can explain the 
high energy level of the Cosmic Rays [3]. 
According to this model, the interstellar 
particles collide with the shockwave 
from a supernova. By the magnetic field 
and collisions with particles in the 
supernova remnant, the interstellar 
particles can be accelerated to an 
extremely high velocity to become what 
we call “Cosmic Ray”. It is still believed 
to be a major mechanism of producing 

highly energetic Cosmic Ray. 
 
II. Modeling 
In this project, we simulate the Fermi 
mechanism by using the computer. In our 
model, we consider the process of the 
acceleration to be one-dimensional 
collisions. We simulate how a particle 
collides with two oscillating walls 
repeatedly. Here, the walls represent the 
planes of the collisions and interactions 
between the particle and the dense matter 
in the shockwave produced in a 
supernova. In addition, there are several 
assumptions in the model. First, all the 
collisions are assumed to be perfectly 
elastic [4], i.e., 
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where vbefore(vafter) is the velocity of a 



particle with mass m before (after) a 
collision with the wall, as seen in the 
wall’s rest frame. By combining (1) with 
the law of conversation of momentum, 
we have 
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where m and M represent the mass of the 
particle and the wall, respectively [7].  
As ∞→M ,  Equations (2) and (3) 
become 
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The velocity of the particle only changes 
in direction but not its magnitude: 

beforeafter vv −= , 

in the wall’s rest frame. 
Actually, there are two situations 

causing the ‘reflection’ of the particle. 
One is the collision between the particle 
and the matter in the shockwave and the 
other is the deflection caused by the 
irregular magnetic fields produced by the 
supernova. However, in both cases, the 
above assumptions still hold. In the 
actual condition, the matter transported 
in the shockwave is in very high density. 
It, therefore, acts as an elastic wall. In the 
case of deflection, the irregular magnetic 
field acts as a ‘magnetic mirror’, which 
deflects the particle to the opposite 
direction. As the work done by the 
magnetic field is perpendicular to the 
direction of its motion, the particle’s 

speed does not change. Therefore, we 
can regard these as perfectly elastic 
collisions. Although it seems that the 
particles have not been accelerated yet, 
the speed in fact changes after the 
transformation from the wall’s 
(shockwave’s) frame to the laboratory’s 
frame. 

For simplicity, the walls are 
assumed to be performing simple 
harmonic motion. We define 
L(t) = Lo + Asin(? t + ?i )   (4), 
 
U(t) = A? cos(? t + ?i)    (5) 
where the position of the wall, L(t), and 
the velocity of the wall U(t) are all set to 
be functions of time, t, and Lo, A, ?  and ? 
are constants. When a collision occurs, 
the position of the particle will be equal 
to that of one wall, i.e. X(t)=L(t). We use 
the computer to solve the equation and 
get the value of t as a solution. By putting 
t into (5),  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

vbefore 

vafter 

Fig. 1a) Collision in the wall’s 
rest frame: the wall is at rest. 

vbefore 

vafter 

Fig. 1b) Collision in the laboratory’s 
frame: the wall is moving at a velocity, U. 



 
 
we can get the velocity of the wall and 
thus vafter can be calculated. 
 
III. Transformation  
All the results that we derived above are 
in the wall’s frame. Therefore, 
transformation to the laboratory’s frame 
is needed. We define the velocities of the 
particle before and after the collision to 
be vo’ and v’ in the lab frame (Fig. 1a and 
Fig. 1b). 
i.e.   vo → vbefore 

  u → U 
  v → vafter 

According to special relativity, we 
have 
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We therefore have 
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Finally, we can express v’ in terms of u 
and vo’, which are all in the lab frame: 

2

2

'21
''2

'
uuv
vvuu

v
o

oo

+−
−−

= .  (9) 

 

 
IV. Simulation of Supernova 
In order to make the model more reliable, 
we use actual data of supernova 
remnants in the parameters.  We first 
consider the initial velocities of the 
particles. As the interstellar particles are 
nearly at rest in the galaxy, we can put 
the velocity of the supernova remnant to 
be the initial velocity [5] [8]. Then, we 
have to think about the velocity of the 
particles in the supernova remnants, i.e. 
the velocity of the wall in the model. 
As the temperature of the supernova 
remnant can be high, we get the velocity 
of the wall by using the gas law [9],  

i.e.  T
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where v  is the root-mean-square speed 
of the particles in the supernova 
remnants. Also, the velocity of the wall 
depends on the cosine function. So, the 
velocity can be expressed as  
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By combining (11) and (12), 
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where mNA is the molar mass of the 
particles.  
The other parameters in the model are 
generated by a random number 
generator. 



 
V. Results and Discussion 
We first consider the walls in the model 
to be anti-phased and with the same 
angular frequency and amplitude.  
 
1. Various initial velocities 

 
Fig. 2a) Particle with constant initial 
velocity 
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Fig. 2b) The vm-?  graph of the model, 
with the initial velocity of the particle 
directly proportional to the angular 
frequency ? . 
 
Fig. 2a shows that the angular frequency 
is directly proportional to the maximum 
velocity of the particle. However, there 
are some points that are slightly off the 
straight line. On the other hand, in Fig. 
2b, all the points lie on the same straight 

line. So, we infer that the dispersion of 
the data depends on the initial 
conditions. 
We first consider a set of particles in 
models with different angular 
frequencies. If we put the initial velocity 
to be  

kwu =  , 
where k is a constant, 

w
t

wk
l '

=  , 

where l is the distance traveled by the 
particle and twt =' , we have 

)'cos()cos( tAwwtAw =  
 Lo + =)sin(wtA Lo + )'sin(tA  

Since t’ is taken to be the “time unit” 
where it is the time for the particle 
traveled with w=1, it should be a 
constant value. The particle should 
collide with the elastic walls in the same 
position and the acceleration is different 
according to the angular frequency, 
i.e. wja = , where j is a constant value 

according to the velocity of the wall. The 
velocity corresponding to different 
angular frequencies after the collision 
should be in ratio according to the 
angular frequency. The velocity can also 
be written in teams of kwu = . Therefore, 
the particles will continue to be at 
velocity kw and collision at the same 
position with the others in different 
angular frequency. 
It proved that there is no resonance as the 
angular frequency is varied. 



Fig. 3a) The velocity changes in the 
process of collision. The initial velocity 
is less than 19.5 ms-1. 
 
In Fig. 3a, the velocity of the particle is 
changing with the number of collisions. 
When its velocity rises to a relatively 
high value, of about 19ms-1 it will drop 
or remain at the value. Therefore, we 
tried to use an initial velocity which is a 
little bit higher than that value. 
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Fig. 3b) The velocities of the particles 
flow into a band. 

When the initial velocity of the particle is 
greater than a particular value, about 
19ms-1 in this case, the velocity of the 
particle will fall into a band (Fig. 3b). 
The velocity will remain in the band 
indefinitely.  
 
2. Various path lengths 
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Fig. 4) The maximum velocity against 
path length 
 
 In Fig. 4, it can be seen clearly that 
the longer the path the higher is the 
maximum velocity. There is a limit to the 
maximum velocity, which is the same 
phenomenon as in Fig. 3a. 
 
3. Various phase differences between 

the two walls 
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Fig. 5) The maximum velocity against 
angular frequency of the walls 
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In Fig. 5, we observe very interesting 
phenomenon. The graph plotted is 
symmetric about an w difference equals 
to π . This is because the velocity and 
position of the wall are, 

( ) ( ))2(coscos ii wtAwwtAw θπθ −−=+

( ) ( ))2(sinsin ii wtAwtA θπθ −−=+  

the angular frequency can be expressed 
as ( )iθπ −2 , so the symmetric 

phenomenon appears. 
 
4. Energy distribution 
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Fig. 6a) The distribution of the particle 
energy in Newtonian mechanics 
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Fig. 6b) The distribution of the particle 
energy taking into account special 
Relativity 
 
 In Fig. 6a and Fig. 6b, we show the 

distribution of the energy of 10000 
particles in Newtonian mechanics and 
Special Relativity. Obviously, the 
tendency and the shapes of the graphs are 
almost the same, which means that 
relativity only has a small effect on the 
model. On the other hand, a very large 
number of particles concentrated around 

the energy 12109.3 × eV. This 
demonstrates that Fermi acceleration is 
able to perform acceleration to a high 
energy. 
 

 
Fig. 6c) Cosmic ray spectrum with real 
cosmic ray data [6] 
 
 Fig. 6c is the energy distribution of 
real cosmic ray particles. The main 
characteristic of the distribution is the 
segment of a segment of straight line, 
which means the flux of cosmic rays is 
proportional to the energy to some power. 
This characteristic is also shown in Fig. 
6a and Fig. 6b, which reveals the 
modeling is in a level similar to reality. 
However, there are still some problems 
with it. The particles in the model cannot 
be accelerated to an extremely high 
energy value. This is partly caused by 
our assumption that the particles are 
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hydrogen particles and the acceleration 
by magnetic fields are not included in 
our model. Also, we only considered the 
Fermi Acceleration in one-dimension, 
whereas a more realistic model should be 
three-dimensional. These may be the 
reasons for the limitation of acceleration. 
 
VI. Conclusion 
 As we see from the results, it is 
possible to produce highly energetic 
cosmic rays with energy greater than 
1010 eV. Also, our model, though very 
simple, can simulate the actual situation 
by producing a number of particles that 
fit the distribution. Our model produces 
an approximate power law relating the 
flux and the energy, in agreement with 
observed data. In addition, we found that 
the maximum velocity of the particle is 
proportional to the angular frequency of 
the oscillation of the wall. As the angular 
frequency depends on the speed of the 
shockwave, we conclude that the 
maximum velocity of particles is 
dependent on the nature of the supernova, 
i.e. the greater amount of the energy 
released from it, the more energetic 
cosmic rays will be produced.  
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