Discrete Flavor Symmetries in D-brane models

fernando marchesano

Motivation

\% What does String Theory has to say about flavor?

- Hierarchies in mass matrices
example: F-theory GUTs

Diega \& Gianluca's talks

- Flavor symmetries

Revicus:
in particular discrete flavor symmetries
Ishimari et al' 10
Altarelli \& Jeruglia'10
\% Discrete flavor symmetries are are used in BSM model building to

- Explain quark textures and lepton masses and mixings
- Avoid FCNC in the MSSM

Motivation

\% What does String Theory has to say about flavor?

- Hierarchies in mass matrices
example: F-theory GUTs
Diega \& Gianluca's talks
- Flavor symmetries

Revicus:
in particular discrete flavor symmetries

Ishimari et al' 10
Altarelli \& Jeruglia'10

Questions:

How generic are discrete flavor symmetries in s.t.? What is their origin? $4 d$ field theory description? which kind of groups \& reps appear?

Motivation

\% To answer these questions, we must learn to realize discrete symmetries in string theory
\& However, quantum gravity does not seem to like global symmetries
\downarrow microscopic arguments in string theory
see e.g. Banks \& Seiberg'11 Banks \& Dixan' 88
\downarrow general arguments in black hole evaporation
and so, in the context of string theory in order to realize exact symmetries one should look for discrete gauge symmetries

Motivation

\% To answer these questions, we must learn to realize discrete symmetries in string theory
\& However, quantum gravity does not seem to like global symmetries
\uparrow microscopic arguments in string theory
\uparrow general arguments in black hole evaporation
and so, in the context of string theory in order to realize exact symmetries one should look for discrete gauge symmetries
\& Examples in the literature:
$\uparrow Z_{N}$ symmetries \subset anomalous $U(1)$'s

- Compactifications with fluxes
\uparrow Compactifications with torsion cycles

DGS in D-brane models

\% Semi-realistic D-brane models generically contain U(1) gauge symmetries beyond $\mathrm{U}(1) \mathrm{y}$

DGS in D-brane models

\% Semi-realistic D-brane models generically contain U(1) gauge symmetries beyond $\mathrm{U}(1) \mathrm{r}$
\% Most of them acquire a mass via a Stückelberg mechanism

$$
\begin{aligned}
\mathcal{L} \supset k B \wedge F & \Rightarrow \quad \mathcal{L}_{\mathrm{Stk}}=\frac{1}{2}(d \phi+k A)^{2} \quad\left(d \phi=*_{4} d B\right) \\
& \Rightarrow \quad M_{U(1)} \sim M_{s}
\end{aligned}
$$

and show up as global $\mathrm{U}(1)$ symmetries at the perturbative level

DGS in D-brane models

\% Semi-realistic D-brane models generically contain U(1) gauge symmetries beyond $\mathrm{U}(1) \mathrm{r}$
\% Most of them acquire a mass via a Stückelberg mechanism

$$
\begin{aligned}
\mathcal{L} \supset k B \wedge F & \Rightarrow \quad \mathcal{L}_{\text {Stk }}=\frac{1}{2}(d \phi+k A)^{2} \quad\left(d \phi=*_{4} d B\right) \\
& \Rightarrow \quad M_{U(1)} \sim M_{s}
\end{aligned}
$$

and show up as global $\mathrm{U}(1)$ symmetries at the perturbative level
\% Such symmetries are broken by D-brane instantons, which generate effective couplings forbidden by the $\mathrm{U}(1)$ symmetry

$$
W \sim \Phi^{n k} e^{-2 \pi n T} \quad T=\rho+i \phi \begin{array}{cc}
\text { invariant } & A \rightarrow A+d \lambda \\
\text { under } & T \rightarrow T+i k \lambda
\end{array}
$$

\Rightarrow Mechanism to generate suppressed couplings (Yukawas, neutrino Majorana masses ...) Blumenhagen, Cuectic, Weigand 'o6

DGS in D-brane models

\% Semi-realistic D-brane models generically contain $\mathrm{U}(1)$ gauge symmetries beyond $\mathrm{U}(1) \mathrm{r}$
\% Most of them acquire a mass via a Stückelberg mechanism

$$
\begin{aligned}
\mathcal{L} \supset k B \wedge F & \Rightarrow \quad \mathcal{L}_{\text {Stk }}=\frac{1}{2}(d \phi+k A)^{2} \quad\left(d \phi=*_{4} d B\right) \\
& \Rightarrow \quad M_{U(1)} \sim M_{s}
\end{aligned}
$$

and show up as global $\mathrm{U}(1)$ symmetries at the perturbative level
\% Such symmetries are broken by D-brane instantons, which generate effective couplings forbidden by the $U(1)$ symmetry

$$
W \sim \Phi^{n k} e^{-2 \pi n T} \quad T=\rho+i \phi \quad \begin{array}{clll}
\text { invariant } & A & \rightarrow A+d \lambda \\
\text { under } & T & \rightarrow T+i k \lambda
\end{array}
$$

$\%$ However, if k is non-trivial, they still have to preserve a residual \mathbb{Z}_{k} gauge symmetry \Rightarrow some couplings are forbidden at all levels

Couplings and symmetries

$\%$ Consequence: The symmetries of a compactification and their nature are relevant for the structure of couplings in the effective theory.
\% Previous example: D-brane $\mathrm{U}(1)$ symmetries are made massive by a Stückelberg mechanism, only broken by non-perturbative effects \rightarrow to a subgroup \mathbb{Z}_{N}

Tree level

Non-perturbative
Forbidden

Discrete Gauge Symmetries in 4d QFT

Discrete gauge symmetries in 4d

\because Basic Lagrangian for $a \mathbb{Z}_{k}$ gauge symmetry

$$
\mathcal{L}=\frac{1}{2}(d \phi-k A)^{2}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \quad \phi \sim \phi+1
$$

\because Gauging of a shift symmetry by a $\mathrm{U}(1)$

$$
A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \lambda \quad \phi \rightarrow \phi+k \lambda
$$

Discrete gauge symmetries in 4d

\because Basic Lagrangian for $a \mathbb{Z}_{k}$ gauge symmetry

$$
\mathcal{L}=\frac{1}{2}(d \phi-k A)^{2}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \quad \underset{\substack{\phi \\ \text { axion }}}{\phi+1}
$$

\because Gauging of a shift symmetry by a $\mathrm{U}(1)$

$$
A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \lambda \quad \phi \rightarrow \phi+k \lambda
$$

$\%$ Dual description:

$$
\mathcal{L}^{\prime}=\frac{1}{2} H \wedge * H+k B \wedge F+\frac{1}{2} F \wedge * F \quad\left(d \phi=*_{4} d B\right)
$$

we can read the remaining \mathbb{Z}_{k} symmetry from the coefficient of the BF coupling

Discrete gauge symmetries in 4d

\% Basic Lagrangian for $a \mathbb{Z}_{k}$ gauge symmetry

$$
\mathcal{L}=\frac{1}{2}(d \phi-k A)^{2}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \quad \phi \sim \phi+1
$$

$\%$ Gauging of a shift symmetry by a $U(1)$

$$
A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \lambda \quad \phi \rightarrow \phi+k \lambda
$$

$\%$ On the other hand, we can interpret k as a winding number between the $S^{1}=\mathbb{R} / \Gamma$, where the axion lives and the $U(1)=S^{1}=\mathbb{R} / \Gamma^{\prime}$ of the gauge theory

Discrete gauge symmetry $=\frac{\Gamma}{\Gamma^{\prime}}=\mathbf{Z}_{k}$

$$
A \rightarrow A+d \lambda \quad ; \quad \phi \rightarrow \phi+n \lambda
$$

$=$ identifications of ϕ not taken into account by the gauge symmetry

Discrete gauge symmetries in 4d

\% Multiple Abelian case:

$$
\begin{array}{r}
\left(\partial_{\mu} \phi^{a}-k_{i}^{a} A_{\mu}^{i}\right)\left(\partial_{\nu} \phi^{b}-k_{i}^{b} A_{\nu}^{i}\right) \eta^{\mu \nu} \delta_{a b} \\
P=\frac{\Gamma}{\Gamma^{\prime}} \rightarrow|P|=\operatorname{det} k
\end{array}
$$

Discrete gauge symmetries in 4d

\% Multiple Abelian case:

$$
\begin{aligned}
\left(\partial_{\mu} \phi^{a}-k_{i}^{a} A_{\mu}^{i}\right)\left(\partial_{\nu} \phi^{b}\right. & \left.-k_{i}^{b} A_{\nu}^{i}\right) \eta^{\mu \nu} \delta_{a b} \\
P & =\frac{\Gamma}{\Gamma^{\prime}} \rightarrow|P|=\operatorname{det} k
\end{aligned}
$$

\% Non-Abelian case:
$\vec{\phi} \simeq \vec{\phi}+\vec{k}_{i} \quad \phi_{a} \simeq \phi_{a}+1$
\downarrow Axion-like scalars with non-commuting shift symmetries

$$
\partial_{\mu} \phi^{a} \partial^{\mu} \phi^{b} G_{a b}(\phi) \quad \phi^{b} \rightarrow \phi^{b}+\epsilon^{A} X_{A}^{b} \quad\left[X_{A}, X_{B}\right]=f_{A B}^{C} X_{C}
$$

Axionic manifold \rightarrow group manifold or quotient by discrete subgroup M / Γ
\downarrow Gauging of the axionic manifold: $\partial_{\mu} \phi^{a} \rightarrow \partial_{\mu} \phi^{a}-k_{i}^{a} A_{\mu}^{i}$
\downarrow Discrete gauge symmetry again given by: $P=\frac{\Gamma}{\Gamma^{\prime}}$

An example

\because Simple example: Heisenberg group \mathscr{H}_{3}

$$
\left[X_{1}, X_{2}\right]=X_{3}
$$

$\%$ Axionic Lagrangian:

$$
G_{a b}(\phi) \partial_{\mu} \phi \partial^{\mu} \phi=\mathcal{K}_{a b} \eta_{\mu}^{a} \eta^{b}{ }^{\mu}
$$

$$
\begin{aligned}
\eta_{\mu}^{1} & =\partial_{\mu} \phi^{1} \quad \eta_{\mu}^{2}=\partial_{\mu} \phi^{2} \\
\eta_{\mu}^{3} & =\partial_{\mu} \phi^{3}+\frac{1}{2}\left(\phi^{1} \partial_{\mu} \phi^{2}-\phi^{2} \partial_{\mu} \phi^{1}\right)
\end{aligned}
$$

$\% \mathscr{H}_{3}$ non-compact but \mathscr{H}_{3} / Γ compact \rightarrow twisted 3 -torus

$$
\Gamma: \begin{cases}\phi^{1} \rightarrow \phi^{1}+1 & \phi^{3} \rightarrow \phi^{3}-\frac{\phi^{2}}{2} \\ \phi^{2} \rightarrow \phi^{2}+1 & \phi^{3} \rightarrow \phi^{3}+\frac{\phi^{1}}{2} \\ \phi^{3} \rightarrow \phi^{3}+1 & \end{cases}
$$

An example

\because Simple example: Heisenberg group \mathscr{H}_{3}

$$
\left[X_{1}, X_{2}\right]=X_{3}
$$

\% Axionic Lagrangian:

$$
G_{a b}(\phi) \partial_{\mu} \phi \partial^{\mu} \phi=\mathcal{K}_{a b} \eta_{\mu}^{a} \eta^{b \mu}
$$

$$
\begin{aligned}
& \eta_{\mu}^{1}=\partial_{\mu} \phi^{1} \quad \eta_{\mu}^{2}=\partial_{\mu} \phi^{2} \\
& \eta_{\mu}^{3}=\partial_{\mu} \phi^{3}+\frac{1}{2}\left(\phi^{1} \partial_{\mu} \phi^{2}-\phi^{2} \partial_{\mu} \phi^{1}\right)
\end{aligned}
$$

$\% \mathscr{H}_{3}$ non-compact but \mathscr{H}_{3} / Γ compact \rightarrow twisted 3 -torus

$$
\Gamma: \begin{cases}\phi^{1} \rightarrow \phi^{1}+1 & \phi^{3} \rightarrow \phi^{3}-\frac{\phi^{2}}{2} \\ \phi^{2} \rightarrow \phi^{2}+1 & \phi^{3} \rightarrow \phi^{3}+\frac{\phi^{1}}{2} \\ \phi^{3} \rightarrow \phi^{3}+1 & \end{cases}
$$

※ Upon gauging: $\quad P=\frac{\Gamma}{\Gamma^{\prime}}=\left(\mathbf{Z}_{k} \times \mathbf{Z}_{k}\right) \rtimes \mathbf{Z}_{k}$

$$
\begin{array}{rr}
\star \mathrm{k}=2 \rightarrow \mathrm{P}=\mathrm{D}_{4} & T_{1}^{k}=T_{2}^{k}
\end{array}=T_{3}^{k}=1 .
$$

Discrete Flavor Symmetries from D-branes

DFS \& intersecting branes

$\%$ The discrete symmetries obtained from anomalous U(1)'s are Abelian and flavor-independent
\% One may however also obtain flavor discrete symmetries. These symmetries may be non-Abelian and contain the previous Abelian symmetries as a subgroup.
\% Simple mechanism for family replication: intersecting D-branes

D6-branes on T^{6}

\% Simplest case: intersecting D6-branes on $\mathrm{T}^{2} \mathrm{x} \mathrm{T}^{2} \mathrm{x} \mathrm{T}^{2}$

\therefore On each T^{2}

$$
\left.\begin{array}{l}
V_{\mu}^{x} \sim g_{\mu}^{x} \\
V_{\mu}^{y} \sim g_{\mu}^{y}
\end{array}\right\} \rightarrow \quad U(1) \times U(1)
$$

D6-branes on T^{6}

\because Simplest case: intersecting D6-branes on $\mathrm{T}^{2} \mathrm{x} \mathrm{T}^{2} \mathrm{x} \mathrm{T}^{2}$

$\%$ On each T^{2}

$$
\begin{aligned}
&\left.\begin{array}{rl}
V_{\mu}^{x} & \sim g_{\mu}^{x} \\
V_{\mu}^{y} & \sim g_{\mu}^{y}
\end{array}\right\} \rightarrow \quad U(1) \times \mathbb{Z}_{q} \\
& \mathcal{L}_{\mathrm{St}}= \frac{1}{2}\left(\partial_{\mu} \phi_{a}-m_{a} V_{\mu}^{x}+n_{a} V_{\mu}^{y}\right)^{2}
\end{aligned}
$$

$$
\left(n_{a}, m_{a}\right)=\left(1, \begin{array}{r}
x \\
3
\end{array}\right)
$$

D6-branes on T^{6}

\because Simplest case: intersecting D6-branes on $\mathrm{T}^{2} \mathrm{x} \mathrm{T}^{2} \mathrm{x} \mathrm{T}^{2}$

\because On each T^{2}

$$
\left(n_{b}, m_{b}\right)=(1,0)
$$

$$
\left.\begin{array}{rl}
V_{\mu}^{x} & \sim g_{\mu}^{x} \\
V_{\mu}^{y} & \sim g_{\mu}^{y}
\end{array}\right\} \rightarrow \quad P=\mathbb{Z}_{I_{a b}} .
$$

D6-branes on T^{6}

\because Simplest case: intersecting D6-branes on $\mathrm{T}^{2} \mathrm{x} \mathrm{T}^{2} \mathrm{x} \mathrm{T}^{2}$

\therefore On each T^{2}

$$
\begin{gathered}
\left.\begin{array}{l}
V_{\mu}^{x} \sim g_{\mu}^{x} \\
V_{\mu}^{y} \sim g_{\mu}^{y}
\end{array}\right\} \rightarrow \quad P=\mathbb{Z}_{I_{a b}} \\
g_{\mathcal{T}}=\left(\begin{array}{ccccc}
& 1 & & & \\
& & 1 & & \\
& & & \ddots & \\
\\
& & & & 1
\end{array}\right)
\end{gathered}
$$

D6-branes on T^{6}

\% Simplest case: intersecting D6-branes on $\mathrm{T}^{2} \mathrm{x} \mathrm{T}^{2} \mathrm{x} \mathrm{T}^{2}$

$\%$ On each T^{2}

$$
\left.\begin{array}{rl}
V_{\mu}^{x} \sim g_{\mu}^{x} \\
V_{\mu}^{y} \sim g_{\mu}^{y}
\end{array}\right\} \rightarrow \quad P=\mathbb{Z}_{d} \quad d=\text { g.c.d. }\left(I_{a b}, I_{b c}, I_{c a}\right)
$$

D6-branes on T^{6}

\because Simplest case: intersecting D6-branes on $\mathrm{T}^{2} \mathrm{x} \mathrm{T}^{2} \mathrm{x} \mathrm{T}^{2}$

\therefore On each T^{2}

$$
\left.\begin{array}{l}
B_{\mu}^{x} \sim B_{\mu x} \\
B_{\mu}^{y} \sim B_{\mu y}
\end{array}\right\} \rightarrow U(1) \times U(1)
$$

D6-branes on T^{6}

$\%$ Simplest case: intersecting D6-branes on $\mathrm{T}^{2} \mathrm{x} \mathrm{T}^{2} \mathrm{x} \mathrm{T}^{2}$

$\%$ On each T^{2}

$$
\left.\begin{array}{rl}
B_{\mu}^{x} & \sim B_{\mu x} \\
B_{\mu}^{y} & \sim B_{\mu y}
\end{array}\right\} \rightarrow \quad U(1) \times \mathbb{Z}_{q}, ~ \begin{aligned}
& \mathcal{L}_{\mathrm{St}}
\end{aligned}=\frac{1}{2}\left(\partial_{\mu} \xi_{a}-n_{a} B_{\mu}^{x}-m_{a} B_{\mu}^{y}\right)^{2} .
$$

D6-branes on T^{6}

\because Simplest case: intersecting D6-branes on $\mathrm{T}^{2} \mathrm{x} \mathrm{T}^{2} \mathrm{x} \mathrm{T}^{2}$

\because On each T^{2}

$$
\left(n_{b}, m_{b}\right)=(1,0)
$$

$$
\left.\begin{array}{rl}
B_{\mu}^{x} & \sim B_{\mu x} \\
B_{\mu}^{y} & \sim B_{\mu y}
\end{array}\right\} \rightarrow P=\mathbb{Z}_{I_{a b}} \text { } \begin{aligned}
\mathcal{L}_{\mathrm{St}} & =\frac{1}{2}\left(\partial_{\mu} \xi_{a}-n_{a} B_{\mu}^{x}-m_{a} B_{\mu}^{y}\right)^{2} \\
& +\frac{1}{2}\left(\partial_{\mu} \xi_{b}-n_{b} B_{\mu}^{x}-m_{b} B_{\mu}^{y}\right)^{2}
\end{aligned}
$$

D6-branes on T^{6}

\because Simplest case: intersecting D6-branes on $\mathrm{T}^{2} \mathrm{x} \mathrm{T}^{2} \mathrm{x} \mathrm{T}^{2}$

\because On each T^{2}

$$
\left.\begin{array}{l}
B_{\mu}^{x} \sim B_{\mu x} \\
B_{\mu}^{y} \sim B_{\mu y}
\end{array}\right\} \rightarrow \quad P=\mathbb{Z}_{I_{a b}}
$$

$$
g_{\mathcal{W}}=\left(\begin{array}{ccccc}
1 & & & & \\
& \omega & & & \\
& & \omega^{2} & & \\
& & & \ddots & \\
& & & & \omega^{I_{a b}-1}
\end{array}\right) \quad \omega=e^{\frac{2 \pi i}{I_{a b}}}
$$

D6-branes on T^{6}

\% Simplest case: intersecting D6-branes on $\mathrm{T}^{2} \mathrm{x} \mathrm{T}^{2} \mathrm{x} \mathrm{T}^{2}$

$\%$ On each T^{2}

$$
\left.\begin{array}{rl}
B_{\mu}^{x} & \sim B_{\mu x} \\
B_{\mu}^{y} & \sim B_{\mu y}
\end{array}\right\} \rightarrow \quad P=\mathbb{Z}_{d} \quad d=\text { g.c.d. }\left(I_{a b}, I_{b c}, I_{c a}\right)
$$

D6-branes on T^{6}

\% Flavor group from each T^{2}

$$
\begin{gathered}
P=\left(\mathbb{Z}_{N} \times \mathbb{Z}_{N}\right) \rtimes \mathbb{Z}_{N}=H_{N} \\
g_{\tau}=\left(\begin{array}{ccccc}
1 & & & \\
& 1 & & \\
& & & \ddots & \\
1 & & & & 1
\end{array}\right) \quad g_{N}=\left(\begin{array}{lllll}
1 & & & \\
& \omega & & & \\
& & \omega^{2} & & \\
& & & \ddots & \\
& & & & \omega^{N-1}
\end{array}\right)
\end{gathered}
$$

\% In total

$$
P=H_{N_{1}} \times H_{N_{2}} \times H_{N_{3}}
$$

D6-branes on T^{6}

\% Flavor group from each T^{2}
\% In total

$$
\begin{gathered}
P=\left(\mathbb{Z}_{N} \times \mathbb{Z}_{N}\right) \rtimes \mathbb{Z}_{N}=H_{N} \\
g_{\mathcal{T}}=\left(\begin{array}{ccccc}
& 1 & & & \\
& & 1 & & \\
& & & \ddots & \\
1 & & & & 1
\end{array}\right) \quad g_{\mathcal{W}}=\left(\begin{array}{ccccc}
1 & & & \\
& \omega & & \\
& & \omega^{2} & & \\
& & & \ddots & \\
& & & & \omega^{N-1}
\end{array}\right)
\end{gathered}
$$

$$
P=H_{N_{1}} \times H_{N_{2}} \times H_{N_{3}}
$$

\% Several D6-branes:

$$
P=H_{d_{1}} \times H_{d_{2}} \times H_{d_{3}}
$$

$$
d_{i}=\text { g.c.d. }\left(I_{a b}^{i}, I_{b c}^{i}, I_{c a}^{i}, \ldots\right)
$$

D6-branes on T^{6}

$\%$ This flavor group constrains the Yukawa couplings:

$$
\begin{gathered}
Y_{i j k} \neq 0 \Longleftrightarrow i+j+k=0 \bmod d \\
Y_{i j k}=Y_{i+\frac{I_{a b}}{d} j+\frac{I_{b c}}{d} k+\frac{I_{c a}}{d}}
\end{gathered}
$$

Cremades, Vanües. 7.7m. '03

-------- brane c

Magnetized D-branes

\% Dual example: $\mathbf{U}(1)$ gauge theory compactified on \mathbf{T}^{2}, with a gauge field strength background in the extra dimensions

$$
F_{2}=2 \pi M d x \wedge d y \quad \Rightarrow \quad A=\pi M(x d y-y d x)
$$

\% The magnetization breaks (gauges) the translational isometry, because A changes as we move on \mathbf{T}^{2}

$$
\begin{aligned}
& A\left(x+\lambda_{x}, y\right)=A(x, y)+\pi M \lambda_{x} d y \\
& A\left(x, y+\lambda_{y}\right)=A(x, y)-\pi M \lambda_{y} d x
\end{aligned}
$$

Magnetized D-branes

$\%$ Dual example: $\mathrm{U}(1)$ gauge theory compactified on T^{2}, with a gauge field strength background in the extra dimensions

$$
F_{2}=2 \pi M d x \wedge d y \quad \Rightarrow \quad A=\pi M(x d y-y d x)
$$

$\%$ The magnetization breaks (gauges) the translational isometry, because A changes as we move on \mathbf{T}^{2}

$$
\begin{aligned}
& e^{\lambda_{j} D_{j}} i D_{k} e^{-\lambda_{j} D_{j}}=i D_{k}+\lambda_{j} F_{j k} \\
& e^{\mu_{j} B_{j}} i D_{k} e^{-\mu_{j} B_{j}}=i D_{k}+\mu_{j} \delta_{j k} \\
& \mathcal{L}_{\mathrm{St}}=-\frac{1}{2} \sum_{\alpha=a, b}\left\{\left(\partial_{\mu} \xi_{x, \alpha}+m_{\alpha} V_{\mu}^{y}-B_{\mu}^{x}\right)^{2}+\left(\partial_{\mu} \xi_{y, \alpha}-m_{\alpha} V_{\mu}^{x}-B_{\mu}^{y}\right)^{2}\right\} \\
& e^{\frac{D_{x}}{M}} \psi^{j} \rightarrow e^{2 \pi i \frac{j}{M}} \psi^{j} \\
& e^{\frac{D_{y}}{M}} \psi^{j} \rightarrow \psi^{j+1}
\end{aligned}
$$

\Rightarrow discrete Heisenberg flavor symmetry
(twisted torus isometries)

Beyond tori

\& This is all very nice, but T^{6} is not a good example of compactification manifold because one cannot build stable chiral D-brane models.
\uparrow One should add O-planes
\downarrow One should add curvature \rightarrow generic CY (example: \mathbf{T}^{6} / Γ)
\& Problem: CY's do not have continuous isometries, so we cannot apply our 4d calculations to find the flavor group

Beyond tori

$\%$ This is all very nice, but T^{6} is not a good example of compactification manifold because one cannot build stable chiral D-brane models.
\uparrow One should add O-planes
\uparrow One should add curvature \rightarrow generic CY (example: T^{6} / Γ)
\% Problem: CY's do not have continuous isometries, so we cannot apply our 4d calculations to find the flavor group
\therefore Idea: Revisit \mathbf{T}^{2} case and understand flavor group in terms of symmetries

$$
\begin{aligned}
& U(1) \times U(1) \rightarrow \mathbb{Z}_{3} \\
& \mathbf{P}^{\text {bulk }} \quad \rightarrow \quad \mathbf{P}^{\text {bulk+brane }}
\end{aligned}
$$

\% Apply the same for CY or $\mathbf{T}^{6 / \Gamma}$

Discrete Flavor Symmetries in orbifolds

Flavor in $\mathrm{T}^{6} / \mathrm{Z}_{2} \times \mathrm{Z}_{2}$

\% Simple example of orbifold: $\mathbf{T}^{6} / \mathbf{Z}_{2} \times \mathbf{Z}_{2}$

- Allows for chiral $N=1$ models

Dudas, Tirmigaziu'05
\downarrow Allows for D-branes with no moduli
\% Isometry group broken to $\mathbf{Z}_{2}{ }^{6}$ by the orbifold action
\% Rigid D6-branes go through fixed points

Flavor in $T^{6} / Z_{2} \times Z_{2}$

$\%$ Breaking pattern for isometries on $\mathbf{T}^{2} / \mathbf{Z}_{\mathbf{2}}$

$$
\mathbb{Z}_{2} \times \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2} \overbrace{a b}^{\rightarrow} \mathbb{Z}_{2} \overbrace{d \text { even }}^{\rightarrow} \mathbb{Z}_{2}
$$

Flavor in $T^{6} / Z_{2} x Z_{2}$

\% The same applies to the B-field transformations
\because Final flavor group: $\mathrm{H}_{2} \simeq \mathrm{D}_{4}$
$\%$ For $\mathbf{T}^{6} / \mathbf{Z}_{2} \mathbf{x} \mathbf{Z}_{2}: \quad \mathbf{P}=D_{4}^{\left[d_{1}-1\right]} \times D_{4}^{\left[d_{2}-1\right]} \times D_{4}^{\left[d_{3}-1\right]}$

$$
d_{i}=\text { g.c.d. }\left(2, I_{a b}^{i}, I_{b c}^{i}, I_{c a}^{i}, \ldots\right)
$$

If in $a \mathbf{T}^{2}$ all intersection numbers are even we have a D_{4} factor

Flavor in $\mathrm{T}^{6} / \mathrm{Z}_{2} \times \mathrm{Z}_{2}$

\% The same applies to the B-field transformations
\because Final flavor group: $\mathrm{H}_{2} \simeq \mathrm{D}_{4}$
\therefore For $\mathbf{T}^{6} / \mathbf{Z}_{\mathbf{2}} \mathbf{X} \mathbf{Z}_{2}: \quad \mathbf{P}=D_{4}^{\left[d_{1}-1\right]} \times D_{4}^{\left[d_{2}-1\right]} \times D_{4}^{\left[d_{3}-1\right]}$

$$
d_{i}=\text { g.c.d. }\left(2, I_{a b}^{i}, I_{b c}^{i}, I_{c a}^{i}, \ldots\right)
$$

If in $\mathrm{a} \mathbf{T}^{2}$ all intersection numbers are even we have a D_{4} factor
\% Remarks:
\uparrow D6-branes through same fixed points \leftrightarrow twisted tadpoles
$\downarrow l_{a b}=$ even does not imply even number of families

$$
\begin{aligned}
\psi_{\text {even }}^{j} & =\psi^{j, N}+\psi^{N-j, N} \\
\psi_{\text {odd }}^{j} & =\psi^{j, N}-\psi^{N-j, N}
\end{aligned}
$$

Flavor in $T^{6} / Z_{2} x Z_{2}$

\% Representations:

$$
\psi_{a b}^{j_{1}, j_{2}, j_{3}}=\psi_{a b}^{j_{1}} \cdot \psi_{a b}^{j_{2}} \cdot \psi_{a b}^{j_{3}}
$$

$\left\|I_{a b}^{i}\right\|$	$\psi_{\text {even }}^{j_{i}} \quad \operatorname{dim}=\left\|I_{a b}^{i}\right\| / 2+1$	$\psi_{\text {odd }}^{j_{i}} \quad \operatorname{dim}=\left\|I_{a b}^{i}\right\| / 2-1$
$4 s+2$	$\stackrel{s+1}{\oplus} \mathbf{R}_{2}$	$\stackrel{\stackrel{8}{\oplus}}{ } \mathbf{R}_{2}$
$8 s+4$	$\stackrel{s+1}{\oplus}(+,+) \stackrel{s+1}{\oplus}(+,-) \stackrel{s+1}{\oplus}(-,+) \stackrel{s}{\oplus}(-,-)$	$\stackrel{s}{\oplus}(+,+) \stackrel{s}{\oplus}(+,-) \stackrel{s}{\oplus}(-,+) \stackrel{s+1}{\oplus}(-,-)$
$8 s+8$	$\stackrel{s+2}{\oplus}(+,+) \stackrel{s+1}{\oplus}(+,-) \stackrel{s+1}{\oplus}(-,+) \stackrel{s+1}{\oplus}(-,-)$	$\stackrel{s}{\oplus}(+,+) \stackrel{s+1}{\oplus}(+,-) \stackrel{s+1}{\oplus}(-,+) \stackrel{s+1}{\oplus}(-,-)$

Examples

\% 4-generation Pati-Salam from Blumenhagen, Cuetic, 7.M. Shiu. 05

N_{α}	$\left(n_{\alpha}^{1}, m_{\alpha}^{1}\right)$	$\left(n_{\alpha}^{2}, m_{\alpha}^{2}\right)$	$\left(n_{\alpha}^{3}, m_{\alpha}^{3}\right)$
$N_{a_{1}}=4$	$(1,0)$	$(0,1)$	$(0,-1)$
$N_{a_{2}}=2$	$(1,0)$	$(2,1)$	$(4,-1)$
$N_{a_{3}}=2$	$(-3,2)$	$(-2,1)$	$(-4,1)$

$$
\begin{gathered}
U(4) \times U(2)_{L} \times U(2)_{R} \\
\downarrow \\
S U(4) \times S U(2)_{L} \times S U(2)_{R}
\end{gathered}
$$

Sector	Field	$D_{4}^{(1)}$	$D_{4}^{(2)}$	$D_{4}^{(3)}$
$a_{1} a_{2}$	$F_{L}=(\mathbf{4}, \overline{\mathbf{2}}, \mathbf{1})$	$\mathbf{1}$	\mathbf{R}_{2}	$(-,-)$
$a_{1} a_{2}^{\prime}$	$F_{L}^{\prime}=(\mathbf{4}, \mathbf{2}, \mathbf{1})$	$\mathbf{1}$	$(-,-)$	\mathbf{R}_{2}
$a_{1} a_{3}$	$F_{R}=(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2})$	\mathbf{R}_{2}	\mathbf{R}_{2}	$(-,-)$
$a_{2} a_{3}$	$H=(\mathbf{1}, \mathbf{2}, \overline{\mathbf{2}})$	\mathbf{R}_{2}	$\mathbf{1} \oplus(+,-) \oplus(-,+)$	$\mathbf{1}$
$a_{2} a_{3}^{\prime}$	$H^{\prime}=(\mathbf{1}, \overline{\mathbf{2}}, \overline{\mathbf{2}})$	\mathbf{R}_{2}	$\mathbf{1}$	$\mathbf{1}^{2} \oplus(+,-) \oplus(-,+) \oplus(-,-)$

$$
\begin{gathered}
Y:\left(a_{1} a_{2}\right) \otimes\left(a_{1} a_{3}\right) \otimes\left(a_{2} a_{3}\right) \longrightarrow(\mathbf{4}, \overline{\mathbf{2}}, \mathbf{1}) \otimes(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2}) \otimes(\mathbf{1}, \mathbf{2}, \overline{\mathbf{2}}) \\
Y^{\prime}:\left(a_{1}^{\prime} a_{2}\right) \otimes\left(a_{1} a_{3}\right) \otimes\left(a_{2}^{\prime} a_{3}\right) \longrightarrow(\mathbf{4}, \mathbf{2}, \mathbf{1}) \otimes(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2}) \otimes(\mathbf{1}, \overline{\mathbf{2}}, \overline{\mathbf{2}})
\end{gathered}
$$

Examples

\% 4-generation Pati-Salam from Blumenhagen, Cuetic, 7.M. Shiu. 05

N_{α}	$\left(n_{\alpha}^{1}, m_{\alpha}^{1}\right)$	$\left(n_{\alpha}^{2}, m_{\alpha}^{2}\right)$	$\left(n_{\alpha}^{3}, m_{\alpha}^{3}\right)$
$N_{a_{1}}=4$	$(1,0)$	$(0,1)$	$(0,-1)$
$N_{a_{2}}=2$	$(1,0)$	$(2,1)$	$(4,-1)$
$N_{a_{3}}=2$	$(-3,2)$	$(-2,1)$	$(-4,1)$

$$
\begin{gathered}
U(4) \times U(2)_{L} \times U(2)_{R} \\
\downarrow \\
S U(4) \times S U(2)_{L} \times S U(2)_{R}
\end{gathered}
$$

Sector	Field	$D_{4}^{(1)}$	$D_{4}^{(2)}$	$D_{4}^{(3)}$
$a_{1} a_{2}$	$F_{L}=(\mathbf{4}, \overline{\mathbf{2}}, \mathbf{1})$	$\mathbf{1}$	\mathbf{R}_{2}	$(-,-)$
$a_{1} a_{2}^{\prime}$	$F_{L}^{\prime}=(\mathbf{4}, \mathbf{2}, \mathbf{1})$	$\mathbf{1}$	$(-,-)$	\mathbf{R}_{2}
$a_{1} a_{3}$	$F_{R}=(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2})$	\mathbf{R}_{2}	\mathbf{R}_{2}	$(-,-)$
$a_{2} a_{3}$	$H=(\mathbf{1}, \mathbf{2}, \overline{\mathbf{2}})$	\mathbf{R}_{2}	$\mathbf{1} \oplus(+,-) \oplus(-,+)$	$\mathbf{1}$
$a_{2} a_{3}^{\prime}$	$H^{\prime}=(\mathbf{1}, \overline{\mathbf{2}}, \overline{\mathbf{2}})$	\mathbf{R}_{2}	$\mathbf{1}$	$\mathbf{1}^{2} \oplus(+,-) \oplus(-,+) \oplus(-,-)$

$$
\begin{gathered}
Y:\left(a_{1} a_{2}\right) \otimes\left(a_{1} a_{3}\right) \otimes\left(a_{2} a_{3}\right) \longrightarrow(\mathbf{4}, \overline{\mathbf{2}}, \mathbf{1}) \otimes(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2}) \otimes(\mathbf{1}, \mathbf{2}, \overline{\mathbf{2}}) \rightarrow \text { only } 3 \text { indep couplings } \\
Y^{\prime}:\left(a_{1}^{\prime} a_{2}\right) \otimes\left(a_{1} a_{3}\right) \otimes\left(a_{2}^{\prime} a_{3}\right) \operatorname{for} \tan (\mathbf{4}, \mathbf{2}, \mathbf{1}) \otimes(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2}) \otimes(\mathbf{1}, \overline{\mathbf{2}}, \overline{\mathbf{2}})
\end{gathered}
$$

Examples

\% 3-generation Pati-Salam

N_{α}	$\left(n_{\alpha}^{1}, m_{\alpha}^{1}\right)$	$\left(n_{\alpha}^{2}, m_{\alpha}^{2}\right)$	$\left(n_{\alpha}^{3}, m_{\alpha}^{3}\right)$
$N_{a}=4$	$(1,0)$	$(1,1)$	$(1,-1)$
$N_{b}=2$	$(n,-3)$	$(0,1)$	$(3,-1)$
$N_{c}=2$	$(l,-1)$	$(-2,1)$	$(-1,-1)$
Sector	Fields	D_{4}	
$a b$	$F_{R}=(\overline{\mathbf{4}}, \mathbf{2}, \mathbf{1})$	\mathbf{R}_{2}	
$a b^{\prime}$	$F_{R}^{\prime}=(\overline{\mathbf{4}}, \overline{\mathbf{2}}, \mathbf{1})$	$(-,-)$	
$a c$	$F_{L}=(\mathbf{4}, \mathbf{1}, \overline{\mathbf{2}})$	\mathbf{R}_{2}	
$a c^{\prime}$	$F_{L}^{\prime}=(\mathbf{4}, \mathbf{1}, \mathbf{2})$	$(+,+)$	
$b c$	$H=(\mathbf{1}, \overline{\mathbf{2}}, \mathbf{2})$	$(-,-) \oplus(-,-)$	
$b c^{\prime}$	$H^{\prime}=(\mathbf{1}, \mathbf{2}, \mathbf{2})$	\oplus6 \oplus	

$$
\begin{gathered}
U(4) \times U(2)_{L} \times U(2)_{R} \\
\downarrow \\
S U(4) \times S U(2)_{L} \times S U(2)_{R} \\
Y: a b \otimes a c \otimes b c \\
Y^{\prime}: a b^{\prime} \otimes a c \otimes b c^{\prime} \longrightarrow(\overline{\mathbf{4}}, \mathbf{2}, \mathbf{1}) \otimes(\mathbf{4}, \mathbf{1}, \overline{\mathbf{2}}) \otimes(\mathbf{1}, \overline{\mathbf{2}}, \mathbf{1}) \otimes(\mathbf{4}, \mathbf{1}, \overline{\mathbf{2}}) \otimes(\mathbf{1}, \mathbf{2}, \mathbf{2}) . \\
8 \text { indep couplings }
\end{gathered}
$$

Conclusions

\& We have analyzed appearance of discrete flavor symmetries in D-brane models. In toroidal models, they can be read from BF couplings of closed string $U(1)$'s to open string axions.
\& In orbifold models we need a new approach: we first consider the group Pbulk that leaves the closed string background invariant and then the subgroup \mathbf{P} that also leaves D-branes invariant.

Conclusions

\% We have analyzed appearance of discrete flavor symmetries in D-brane models. In toroidal models, they can be read from BF couplings of closed string $U(1)$'s to open string axions.
\& In orbifold models we need a new approach: we first consider the group $P^{b u l k}$ that leaves the closed string background invariant and then the subgroup \mathbf{P} that also leaves D-branes invariant.
\& P will act non-trivially on open string zero modes and generate a non-Abelian flavor group \rightarrow forbid Yukawa couplings beyond Z_{k} 's. We can also define the approximate discrete symmetry Pabc
\% We have analyzed the case of $\mathbf{T}^{6} / Z_{2} \times Z_{2}$, obtaining a flavor group given by D_{4} and tensor products of it.
\% This definition of flavor group is quite general and can be applied to any manifold with discrete symmetries in the closed string sector, like e.g. smooth Calabi-Yau compactifications.

