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Heterotic string model building

Some goals of string phenomenology

Goals:

Construct the Standard Model

Understand moduli stabilization

Understand supersymmetry breaking

Cosmological evolution and inflation
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Heterotic string model building

Standard Model from String Theory

Generically in this field obtaining the Standard Model for String
Theory means getting close to the MSSM, i.e.:

a 4D N = 1 supersymmetric gauge theory,

with gauge group containing SU(3)C × SU(2)L × U(1)Y ,

with a net number of three chiral generations of quarks and
leptons,

and at least one Higgs doublet pair.

Stefan Groot Nibbelink (ASC,LMU) The heterotic string on magnetized orbifolds IAS, HKUST, 2013 4 / 44



Heterotic string model building

Standard Model exotics
In additions essentially all MSSM–like string models suffer from
exotics: State that are charged under the SM group but not part
of the MSSM:

additional duplicates of SM states,

quark or lepton like–states but with different hyper charge.

Since these exotics states are not part of the SM, they should
decouple at the low energies (i.e. 1 TeV):

They have to be vector–like such that they could pair up to
become massive,

Yukawa–like couplings have to present for them for this to
actually work.
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Heterotic string model building

Different string pheno settings
Possible theories:

heterotic string

open strings

F–theory

M–theory

Possible exact constructions:

Orbifold CFTs

Free-fermionic models

Gepner models
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Heterotic string model building

Different formulations of the heterotic string

Target space description

Worldsheet description
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Heterotic string model building

Target space formulation of the heterotic string

1 10D N = (1, 0) Supergravity:

(Graviton, B–field, dilaton; Gravitino, dilatino)

2 10D N = (1, 0) Super Yang–Mills:

(Gauge fields; Gauginos)

Gauge group: E8 × E8 or SO(32)
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Heterotic string model building

Worldsheet formulations of the heterotic string

2D N = (0, 1) Super conformal field theory (in light–cone
gauge):

Coordinate fields X M , M = 2, . . . ,9,

and their right–moving superpartners ψM
R .

additional left–moving bosons X I
L , I = 1, . . . , 16.

These additional left–moving bosons give rise to the target space
gauge degrees of freedom.
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Geometrical construction

The basic requirement is that one obtains an effective 4D field
theory with N = 1 SUSY: Candelas,Horowitz,Strominger,Witten’85

M1,9 → M1,3 ×M6

Six internal dimensions form a compact complex manifold
M6 with vanishing first Chern class.

By the Calabi–Yau theorem such a manifold can be equiped
with a Ricci–flat Kähler metric.
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Background gauge flux

In order that also the gauge background preserves 4D N = 1
SUSY it has to satisfy the Hermitean Yang–Mills equations

F(2,0) = F(0,2) = 0 , Gi iFi i = 0

These are complicated differential equations involving the
explicitly unknown Calabi–Yau metric Gi i .

The Donaldson-Uhlenbeck-Yau theorem provides
quasi–topological conditions when these equations can be
satisfied.
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Toroidal orbifold geometries
The idea of orbifolds is that they are very simple geometries yet
shared the main property of Calabi–Yau manifolds namely that
only 4D N = 1 SUSY survives. Dixon,Harvey,Vafa,Witten’85

Toroidal orbifolds are defined as

T 6/G

where T 6 is some six dimensional torus spanned by lattice
vectors eα and G a finite group.

A full classification of all orbifolds compatible with N ≥ 1 in 4D
has recently been obtained: Fischer,Ratz,Torrado,Vaudrevange’12

There are in total 520 inequivalent toroidal orbifolds

162 of them have Abelian point groups (e.g. Z3,Z4, Z2 × Z2)
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Calabi–Yau model building results

On one particular complete intersection Calabi–Yau, the Schoen
manifold, various groups have constructed MSSM–like models
using stable SU(5) vector bundles. Donagi,Ovrut,Pantev,Waldram’00,

Bouchard,Donagi’05, Braun,He,Ovrut,Pantev’05

A more systematic study is possible if one starts with line bundles
on complete intersection Calabi–Yaus which then could be
deformed to non–Abelian bundles as well. This has lead to a
large set of MSSM–like models. Anderson,Gray,Lukas,Palti’11
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Orbifold model building results

Based on such orbifolds various studies have been undertaken to
construct MSSM–like models from the heterotic string:

T 6/Z6-II Buchmuller,Hamaguchi,Lebedev,Ratz’05,

Lebedev,Nilles,Raby,Ramos-Sanchez,Ratz,Vaudrevange,Wingerter’06

T 6/Z12−I Kim,Kim,Kyae’07

T 6/Z2 × Z2 Blaszczyk,SGN,Ratz,Ruehle,Trapletti,Vaudrevange’09

T 6/Z4 × Z2 Mayorga-Pena,Nilles,Oehlmann’12

T 6/Z8-I,II SGN,Loukas’13
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Euler number zero manifolds

Euler number of orbifolds

Orbifolds that have been used for string model building so far
have non–vanishing Euler number, χ = 2(h11 − h21), e.g.:
Erler,Klemm’92

T 6/Z3: (h11, h21) = (36,0); χ = 72

T 6/Z6-II: (h11, h21) = (35,11); χ = 48

T 6/Z12-I: (h11,h21) = (29,5); χ = 48

T 6/Z2 × Z2: (h11,h21) = (51,3); χ = 96
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Euler number zero manifolds

Vanishing Euler number manifolds

Calabi–Yau manifolds with vanishing Euler number are interesting
as they exhibit properties of enhanced supersymmetry.
Kashani–Poor,Minasian,Triendl’03

However, orbifolds with vanishing Euler number are not
considered for phenomenology since they always give rise to a
non–chiral spectrum.

Recent classification reveals that 23 of the 138 orbifolds with
Abelian point group given exactly N = 1 4D supersymmetry have
vanishing Euler number.
Fischer,Ratz,Torrado,Vaudrevange’12

They are all variants of T 6/Z2 × Z2 orbifolds.
Donagi,Wendland’08
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Euler number zero manifolds

Strategy of this talk

In this talk we will see that one should not write off all these
orbifolds with vanishing Euler number just yet.

To this end, we:

consider a concrete orbifold with vanishing Euler number,

show that by putting magnetic flux on its tori, it is possible to
obtain 4D chirality,

and construct an MSSM-like model in this way.
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Z2 × Z2 orbifolds

Some Z2 × Z2 orbifolds

Generalities of heterotic Z2 × Z2 orbifolds

The standard Z2 × Z2 orbifold

A roto–translational Z2 × Z2 orbifold
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Z2 × Z2 orbifolds

Generalities of heterotic Z2 × Z2 orbifolds
Z2 × Z2 orbifolds are defined as

T 6/Z2 × Z2 = C
3/S

where the space group S ∋ g = (rot, trans) is generated by:

translations gi = (1,ei) over basis vectors

e1 = (1,0,0) ,

e2 = (i ,0, 0) ,

e3 = (0,1,0) ,

e4 = (0, i , 0) ,

e5 = (0,0, 1) ,

e6 = (0,0, i) ,

elements gθ = (θ, tθ) and gω = (ω, tω), involve Z2 × Z2

rotations,

θ : (z1, z2, z3) → (z1,−z2,−z3) , ω : (z1, z2, z3) → (−z1, z2,−z3)

possibly combined with some translations: tθ, tω.
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Z2 × Z2 orbifolds

Gauge embedding

The gauge embedding in the bosonic formulation with 16
left–moving coordinates X I

L (I = 1, . . . , 16) is defined as:

g X I
L = X I

L + V I
g , Vg = k Vθ + ℓVω + ni Wi ,

for g = gk
θ gℓω gn1

1 · . . . · gn6
6 in terms of:

gauge shift vectors Vθ and Vω,

and discrete Wilson lines Wi,

satisfying appropriate conditions for modular invariance.
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Z2 × Z2 orbifolds

The standard Z2 × Z2 orbifold

The space group S is generated by the elements:

gθ =
(
θ,0

)
, gω =

(
ω, 0

)
, gi =

(
1,ei

)
.

This is the DW(0–1) orbifold in the classification Donagi,Wendland’08 .

In detail, the action of gθ and gω is given by

gθ
(
z1, z2, z3

)
=

(
z1,−z2,−z3

)
,

gω
(
z1, z2, z3

)
=

(
− z1, z2,−z3

)
,

gθgω
(
z1, z2, z3

)
=

(
− z1,−z2, z3

)
.
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Z2 × Z2 orbifolds

The standard Z2 × Z2 orbifold

e3

e4

e5

e6

e1

e2

e1

e2

e5

e6

θω–sector:

ω–sector:

θ–sector:

e3

e4
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Z2 × Z2 orbifolds

The standard Z2 × Z2 orbifold

For the orbifold standard embedding,

Vθ =
(
0,

1
2
, -

1
2
,05)(08) , Vω =

(
-
1
2
,0,

1
2
, 05)(08) ,

we obtain:

51 (= 3 untwisted and 3 · 16 twisted) 27–plets,

and 3 untwisted 27–plets of E6.

Consequently, the Hodge / Euler numbers of the DW(0–1) orbifold
read:

(h11,h21) = (51,3) , χ = 2(h11 − h21) = 96
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Z2 × Z2 orbifolds

A roto–translational Z2 × Z2,rototrans orbifold

The space group S is generated by the elements:

gθ =
(
θ,0

)
, gω =

(
ω, 1

2 e5
)
, gi =

(
1,ei

)
.

This is the DW(0–2) orbifold in the classification of Donagi,Wendland’08

.

In detail, the action of gθ and gω is given by

gθ
(
z1, z2, z3

)
=

(
z1,−z2,−z3

)
,

gω
(
z1, z2, z3

)
=

(
− z1, z2,−z3 + 1

2

)
,

gθgω
(
z1, z2, z3

)
=

(
− z1,−z2, z3 −

1
2

)
.
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Z2 × Z2 orbifolds

A roto–translational Z2 × Z2,rototrans orbifold

e3

e4

e5

e6

e1

e2

e5

e6

ω–sector:

θ–sector:

gθ
(
z1, z2, z3

)
=

(
z1,−z2,−z3

)
,

gω
(
z1, z2, z3

)
=

(
− z1, z2,−z3 + 1

2

)
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Z2 × Z2 orbifolds

A roto–translational Z2 × Z2,rototrans orbifold

In this case the orbifold standard embedding gives us

19 (= 3 untwisted and 2 · 8 twisted) 27–plets,

and 19 (= 3 untwisted and 2 · 8 twisted) 27–plets of E6.

Consequently, the Hodge / Euler numbers of the DW(0–2) orbifold
read:

(h11,h21) = (19,19) , χ = 2(h11 − h21) = 0
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Orbifold resolution with magnetic flux

Orbifold resolution

Now we want to put magnetic fluxes on the tori of this orbifold.
But as far as we are aware there is no exact CFT description in
this case.

To overcome this, we

construct the orbifold resolution

put an Abelian gauge flux background

compute the spectrum
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Orbifold resolution with magnetic flux

Constructing the orbifold resolution
To construct an orbifold resolution we have to identify:
Denef,Douglas,Florea’04, Luest,Reffert,Scheidegger,Stieberger’06,

SGN,Held,Ruehle,Trapletti,Vaudrevange’09

a complete set of divisors of the resolution,

the set of linear equivalence relations among them,

their intersection numbers.

For an orbifold resolution there are three types of divisors:

inherited divisors (four–tori within the orbifold),

ordinary divisors (vanishing loci of local coordinates near the
orbifold singularities),

exceptional divisors (blow–up cycles).
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Orbifold resolution with magnetic flux

Constructing the orbifold resolution

For the resolution of the T 6/Z2 × Z2,rototrans we have:
SGN,Vaudrevange’12

Three inherited divisors:

R1 := {z1 = c1} ∪ {z1 = −c1} , R2 := {z2 = c2} ∪ {z2 = −c2}

R3 := {z3 = c3} ∪ {z3 = −c3} ∪ {z3 = 1
2 + c3} ∪ {z1 = 1

2 − c1}

12 ordinary divisors:

D1,n1n2 := {z1 = 1
2 n1 + i

2 n2} , D3,n6 := {z3 = i
2 n6} ∪ {z3 = 1

2 + i
2 n6}

D2,n3n4 := {z2 = 1
2 n3 + i

2 n4} , D′
3,n′6

:= {z3 = 1
4 + i

2 n′
6} ∪ {z3 = 3

4 + i
2 n′

6}

16 exceptional divisors:

θ–sector: Er = En3n4n6 , ω–sector: E ′
r ′ = E ′

n1n2n′6
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Orbifold resolution with magnetic flux

Constructing the orbifold resolution
The linear equivalence relations read:

2 D1,n1n2 = R1 −
∑

n′6

E ′
n1n2n′6

, 2 D′
3,n′6

= R3 −
∑

n1,n2

E ′
n1n2n′6

,

2 D2,n3n4 = R2 −
∑

n6

En3n4n6 , 2 D3,n6 = R3 −
∑

n3,n4

En3n3n6 .

The non–vanishing self–intersections between these divisors are:

R1R2R3 = 4 , R2(E ′
n1n2n′6

)2 = R1(En3n4n6)
2 = −4 .

The total Chern class c(TX ) is computed from the splitting
principle:

c(TX ) =
∏

(1 + D)
∏

(1 + E)
∏

(1 − R)2 ,

In this way we have found an alternative description of the
Schoen manifold, which was used to construct MSSM–like
models with bundles. Bouchard,Donagi’05 Braun,He,Ovrut,Pantev’05
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Orbifold resolution with magnetic flux

Abelian gauge flux background

The gauge flux is expanded as:

F

2π
=

∑

a

Ra HBa +
∑

r

Er HVr +
∑

r ′

E ′
r ′ HV ′

r ′

where HA = AIHI, with HI are the Cartan generators of E8 × E8
′.

This embedding is characterized by 16-dimensional vectors:

line bundle vectors Vr ,V ′
r ′

(analogous to shift vectors and Wilson lines on the orbifold)

and the magnetic fluxes Ba.

They are subject to sets of flux quantization and Bianchi identities.
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Orbifold resolution with magnetic flux

Determining the massless spectrum

The spectrum in four dimensions is determined by the multiplicity
operator SGN,Trapletti,Walter’07

N4D =

∫

X

{1
6

( F

2π

)3
+

1
12

c2(TX )
F

2π

}
.

This operator counts the number of chiral states arise for each of
the 248 + 248 gaugino components.

For the orbifold resolution of in interest in this talk, it is readily
computed:

N4D = 2
(

1 −
∑

r

H2
Vr

)
HB1 + 2

(
1 −

∑

r ′

H2
V ′

r ′

)
HB2 + 4 HB1HB2HB3 .

This result shows that without magnetized tori, i.e. Ba = 0, no
chiral states in four dimensions.
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Example: A semi–realistic MSSM model

Schoen line bundle MSSM

Input data: gauge fluxes

double GUT spectra

Wilson line GUT → MSSM breaking

Detailed matching
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Example: A semi–realistic MSSM model

Choice gauge fluxes
We define a line bundle model on the Schoen manifold with the
flux vectors

B1 =
(
3,−3, 06)(3, 3, 06) and B2 = B3 = 0 ,

on the ordinary divisors Ra,

V(0,0,0) = V(0,1,0) = −V(0,0,1) = −V(0,1,1) =
(

1
4

8)(
0, 0, 0, 1

2, 0,−
1
2,−

1
2,−

1
2

)
,

V(1,0,0) = V(1,1,0) = −V(1,0,1) = −V(1,1,1) =
(
0, 1

2,
1
2, 0

5)(0, 1
2, 0, 0, 0,−

1
2,−

1
2,−

1
2

)
,

on the exceptional divisors Er , and finally,

V ′
(0,0,0) = −V ′

(0,1,1) =
(
0,−1

2,−
1
2, 0

5)(1
2,

1
2,

1
2, 0,−

1
2, 0, 0, 0

)
,

V ′
(0,1,0) = −V ′

(0,0,1) =
(
0,−1

2,−
1
2, 0

5)(1
2,

1
2,−

1
2, 0,

1
2, 0, 0, 0

)
,

V ′
(1,0,0) = V ′

(1,1,0) =
(
0, 1, 0, 05)( − 1

2,−
1
2, 0, 0, 0, 0, 0, 0

)
,

V ′
(1,1,1) = V ′

(1,0,1) =
(
− 1, 07)( − 1

2,−
1
2, 0

6) ,

on the exceptional divisors E ′
r ′.

Stefan Groot Nibbelink (ASC,LMU) The heterotic string on magnetized orbifolds IAS, HKUST, 2013 34 / 44



Example: A semi–realistic MSSM model

Double six generation GUT
Superfield Representation U(1) charges
multiplicity SU(5) × SU(5)′ q0 q1 q2 q3 q4 q5 q6 q7

6
(
10, 1

)
0 0 0 0 1 0 -3 0

6 (5, 1) 0 0 0 0 0 0 -6 0
6

(
5, 1

)
1 0 1 0 -1 0 1 0

6 (5, 1) 1 0 1 0 0 0 4 0
24 (1, 1) 2 0 0 0 0 0 0 0
6 (1, 1) -1 0 -1 0 -1 0 5 0
6 (1, 1) 1 0 -3 0 0 0 0 0
6 (1, 1) 0 0 0 0 2 0 0 0
6

(
1,10

)
0 0 0 2 0 0 0 -6

24 (1, 5) 0 1 0 3 0 0 0 -2
6

(
1, 5

)
0 0 0 -2 0 0 0 -8

6
(
1, 5

)
0 0 0 0 0 1 0 7

6
(
1, 5

)
0 0 0 0 0 -1 0 7

42 (1, 1) 0 0 0 4 0 1 0 -5
42 (1, 1) 0 0 0 4 0 -1 0 -5
24 (1, 1) 0 1 0 -3 0 1 0 -5
24 (1, 1) 0 1 0 -3 0 -1 0 -5
6 (1, 1) 0 2 0 0 0 0 0 0
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Example: A semi–realistic MSSM model

Wilson line GUT → MSSM breaking

Both the orbifold and the resolution admit a freely acting
involution:

(
z1, z2, z3

)
→

(
z1 + i

2, z2 + i
2, z3 + i

2

)
.

The freely acting involution can be embedded as a Wilson line

Wfree =
(
03,1,1, 1,−3

2,−
3
2

)(
08) ,

that breaks SU(5) to SU(3) × SU(2) × U(1)Y non–locally.

This choice leads to an MSSM–like model with three generations.
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Conclusion

Summary

We have studied a specific class of heterotic orbifolds with
vanishing Euler number:

these do not give chirality in 4D,

unless the tori become magnetized.

To determine the spectrum one can consider:

the full resolution of the orbifold with gauge fluxes,

or intermediate 6D models on magnetized tori.

A concrete example of this all was provided by a orbifold
T 6/Z2 × Z2,rototrans. We construct a MSSM–like model based on it.
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Appendix: Intermediate T 4/Z2 orbifold

Route II: Two–step procedure

Intermediate T 4/Z2 models

6D field theories on magnetized two–tori

Consistency of routes I & II
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Appendix: Intermediate T 4/Z2 orbifold

Magnetized intermediate 6D models

Intermediate T 4/Z2 models:

The divisor R1 can itself be viewed as the resolution of the
sub–orbifold T 4/Z2 inside T 6/Z2 × Z2,rototrans.

Using the CFT techniques discussed above we can determine
the massless spectrum in 6D.

6D field theories on magnetized two–tori:

Next one takes this 6D theory as the starting point for a
dimensional reduction on a two–tori with a magnetic flux B1.

By analyzing the Dirac equation in 6D one can show that the
number of 4D chiral states is proportional to the the magnetic flux
Cremades,Inbanez,Marchesano’04, Abe,Choi,Kobayashi,Ohki’09 .
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Appendix: Intermediate T 4/Z2 orbifold

Consistency of routes I & II

The 6D multiplicity operator:

N6D(R1) = 2
(

1 −
∑

r

H2
Vr

)
,

determines the spectrum on the resolution of T 4/Z2.

Notice that the 4D multiplicity operator can expressed as:

N4D = HB1 N6D(R1) ,

assuming that B2 = B3 = 0 for simplicity.

Hence we see that the 4D multiplicity is given as the 6D
multiplicity times the contribution due to the magnetic flux.
SGN,Vaudrevange’12
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Appendix: Intermediate T 4/Z2 orbifold

Detailed spectrum matching

From the full blow down limit we can identify the input data for the
intermediate orbifold T 4/Z2:

Vθ =
(

1
4

8)(1
2,−

1
2,

1
2, 0,

1
2, 0

3) , W3 =
(
−1

4,
1
4,

1
4,−

1
4

5)(
0, 1

2, 0,
1
2,−1,03)

Blowing up the intermediate orbifold requires:
SGN,Held,Ruhle,Trapletti,Vaudrevange’09

selecting the blow–up modes,

performing field redefinitions using the blow–up modes.

Finally, one needs to take into account the consequences of the
magnetic flux.
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Appendix: Intermediate T 4/Z2 orbifold

6D N = 1 super Blow–up induced redefinitions of Surviving 4D 4D multi-
multiplet on T 4/Z2 its chiral superfield component(s) chiral superfields plicity

(E6 × SU(8)′ × U(1)3) (E6 × SU(7)′ × U(1)4) (SU(5) × SU(5)′ × U(1)8) Ñ4D

untwisted gauge sector

(78, 1)(0,0,0) (78, 1)(0,0,0)

(
10,1

)
(0,0,0,0,1,0,−3,0)

6
(vector) (5,1)(0,0,0,0,0,0,−6,0) 6

(1,1)(0,0,0,0,2,0,0,0) 6

(1,63)(0,0,0) (1,48)(0,0,0,0)

(
1,5

)
(0,0,0,0,0,1,0,7)

6

(vector)
(
1,5

)
(0,0,0,0,0,−1,0,7)

6
(
1,7

)
(0,0,0,4)

– –
(1, 7)(0,0,0,−4) (1,1)(0,0,0,−4,0,1,0,5) 6

(1,1)(0,0,0,−4,0,−1,0,5) 6
(1,1)(0,0,0,0) – –

untwisted matter sectors: Ua, a = 2, 3
(27,1)(−1,0,−1) (27,1)(−1,0,−1,0) (1,1)(−1,0,−1,0,−1,0,5,0) 6

(hyper)
(
27, 1

)
(1,0,1,0)

(5,1)(1,0,1,0,0,0,4,0) 6(
5,1

)
(1,0,1,0,−1,0,1,0)

6

(1,70)(0,0,0)

(
1,35

)
(0,0,0,−2)

(
1,5

)
(0,0,0,−2,0,0,0,−8)

6

(half–hyper) (1,35)(0,0,0,2)

(
1, 10

)
(0,0,0,2,0,0,0,−6)

6
(1,1)(1,0,−3) (1, 1)(1,0,−3,0) (1,1)(1,0,−3,0,0,0,0,0) 6

(hyper) (1, 1)(−1,0,3,0) – –
(1,1)(0,2,0) (1,1)(0,2,0,0) (1,1)(0,2,0,0,0,0,0,0) 6

(hyper) (1, 1)(0,−2,0,0) – –
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Appendix: Intermediate T 4/Z2 orbifold

6D N = 1 super Blow–up induced redefinitions of Surviving 4D 4D multi-
multiplet on T 4/Z2 its chiral superfield component(s) chiral superfields plicity

(E6 × SU(8)′ × U(1)3) (E6 × SU(7)′ × U(1)4) (SU(5) × SU(5)′ × U(1)8) Ñ4D

twisted matter sector at the fixed tori: r = (0,n4,n5,0), n4, n5 = 0,1
(1,8)(

−
1
2,−

1
2,−

3
2

) (1,1)(1
2 ,

1
2,

3
2,−

7
2

) = e+br blow–up mode axion

(hyper) (1,1)(
−

1
2,−

1
2,−

3
2,

7
2

) = e+br (1, 1)(0,0,0,0) – –

(1,7)(
−

1
2,−

1
2,−

3
2,−

1
2

) = e+br (1, 7)(0,0,0,−4) – –

(
1,7

)(
1
2,

1
2,

3
2,

1
2

) = e−br
(
1,7

)
(0,0,0,4)

(1,1)(0,0,0,4,0,1,0,−5) 6

(1,1)(0,0,0,4,0,−1,0,−5) 6
(1,8)(1

2,−
1
2,

3
2

) (1,1)(1
2,−

1
2,

3
2,

7
2

) = e+br (1, 1)(1,0,3,0) – –

(hyper) (1,1)(
−

1
2 ,

1
2,−

3
2,−

7
2

) = e−br (1, 1)(−1,0,−3,0) – –

(
1,7

)(
−

1
2,

1
2,−

3
2,

1
2

) = e+br
(
1,7

)
(0,1,0,−3)

(1,1)(0,1,0,−3,0,1,0,−5) 6

(1,1)(0,1,0,−3,0,−1,0,−5) 6
(1,7)(1

2 ,−
1
2,

3
2,−

1
2

) = e−br (1, 7)(0,−1,0,3) – –

And similar for the other twisted sectors.
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Appendix: Intermediate T 4/Z2 orbifold

Heterotic CFT on magnetized orbifolds

Following the logic of Aldazabal,Font,Ibanez,Uranga,Violero’97

taking into account the Bianchi identities in the presence of
magnetic fluxes, we propose that the local modular invariance
conditions are modified to

V 2
gr
≡

3
2

+
1
4

B2 · B3 , V 2
gr ′

≡
3
2

+
1
4

B1 · B3 .

In addition, we expect that the left–moving mass is modified to

M2
L =

1
2

(P + Vgr )
2 + Ñ −

3
4
−

1
8

B2 · B3 ,

M2
L =

1
2

(P + Vgr ′
)2 + Ñ −

3
4
−

1
8

B1 · B3 .
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